login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A357580
a(n) = ((1 + sqrt(n))^n - (1 - sqrt(n))^n)/(2*n*sqrt(n)).
1
1, 1, 2, 5, 16, 57, 232, 1017, 4864, 24641, 133024, 752765, 4476928, 27707513, 178613376, 1191756593, 8231124992, 58598528065, 429868937728, 3239768599221, 25073052286976, 198825601967609, 1614604933769216, 13405327061690025, 113725655719346176
OFFSET
1,3
LINKS
FORMULA
a(n) = A357502(n)/n.
From Alois P. Heinz, Oct 04 2022: (Start)
a(n) = [x^n] x/(n*(1-2*x-(n-1)*x^2)).
a(n) = Sum_{j=0..floor(n/2)} n^(j-1) * binomial(n,2*j+1).
a(n) = A099173(n,n)/n. (End)
MAPLE
b:= proc(n, k) option remember;
`if`(n<2, n, 2*b(n-1, k)+(k-1)*b(n-2, k))
end:
a:= n-> b(n$2)/n:
seq(a(n), n=1..25); # Alois P. Heinz, Oct 04 2022
MATHEMATICA
Expand[Table[((1 + Sqrt[n])^n - (1 - Sqrt[n])^n)/(2*n*Sqrt[n]), {n, 1, 27}]]
PROG
(Python)
from sympy import simplify, sqrt
def A357580(n): return simplify(((1+sqrt(n))**n-(1-sqrt(n))**n)/(n*sqrt(n)))>>1 # Chai Wah Wu, Oct 14 2022
CROSSREFS
Sequence in context: A114296 A378382 A121689 * A192635 A009225 A157612
KEYWORD
nonn
AUTHOR
STATUS
approved