login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099173
Array, A(k,n), read by diagonals: g.f. of k-th row x/(1-2*x-(k-1)*x^2).
3
0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 4, 4, 0, 1, 2, 5, 8, 5, 0, 1, 2, 6, 12, 16, 6, 0, 1, 2, 7, 16, 29, 32, 7, 0, 1, 2, 8, 20, 44, 70, 64, 8, 0, 1, 2, 9, 24, 61, 120, 169, 128, 9, 0, 1, 2, 10, 28, 80, 182, 328, 408, 256, 10, 0, 1, 2, 11, 32, 101, 256, 547, 896, 985, 512, 11
OFFSET
0,6
LINKS
Ralf Stephan, Prove or disprove. 100 Conjectures from the OEIS, #16, arXiv:math/0409509 [math.CO], 2004.
FORMULA
A(n, k) = Sum_{i=0..floor(k/2)} n^i * C(k, 2*i+1) (array).
Recurrence: A(n, k) = 2*A(n, k-1) + (n-1)*A(n, k-2), with A(n, 0) = 0, A(n, 1) = 1.
T(n, k) = A(n-k, k) (antidiagonal triangle).
T(2*n, n) = A357502(n).
A(n, k) = ((1+sqrt(n))^k - (1-sqrt(n))^k)/(2*sqrt(n)). - Jean-François Alcover, Jan 21 2019
EXAMPLE
Square array, A(n, k), begins as:
0, 1, 2, 3, 4, 5, 6, 7, 8, ... A001477;
0, 1, 2, 4, 8, 16, 32, 64, 128, ... A000079;
0, 1, 2, 5, 12, 29, 70, 169, 408, ... A000129;
0, 1, 2, 6, 16, 44, 120, 328, 896, ... A002605;
0, 1, 2, 7, 20, 61, 182, 547, 1640, ... A015518;
0, 1, 2, 8, 24, 80, 256, 832, 2688, ... A063727;
0, 1, 2, 9, 28, 101, 342, 1189, 4088, ... A002532;
0, 1, 2, 10, 32, 124, 440, 1624, 5888, ... A083099;
0, 1, 2, 11, 36, 149, 550, 2143, 8136, ... A015519;
0, 1, 2, 12, 40, 176, 672, 2752, 10880, ... A003683;
0, 1, 2, 13, 44, 205, 806, 3457, 14168, ... A002534;
0, 1, 2, 14, 48, 236, 952, 4264, 18048, ... A083102;
0, 1, 2, 15, 52, 269, 1110, 5179, 22568, ... A015520;
0, 1, 2, 16, 56, 304, 1280, 6208, 27776, ... A091914;
Antidiagonal triangle, T(n, k), begins as:
0;
0, 1;
0, 1, 2;
0, 1, 2, 3;
0, 1, 2, 4, 4;
0, 1, 2, 5, 8, 5;
0, 1, 2, 6, 12, 16, 6;
0, 1, 2, 7, 16, 29, 32, 7;
0, 1, 2, 8, 20, 44, 70, 64, 8;
0, 1, 2, 9, 24, 61, 120, 169, 128, 9;
0, 1, 2, 10, 28, 80, 182, 328, 408, 256, 10;
MATHEMATICA
A[k_, n_]:= Which[k==0, n, n==0, 0, True, ((1+Sqrt[k])^n - (1-Sqrt[k])^n)/(2 Sqrt[k])]; Table[A[k-n, n]//Simplify, {k, 0, 12}, {n, 0, k}]//Flatten (* Jean-François Alcover, Jan 21 2019 *)
PROG
(PARI) A(k, n)=sum(i=0, n\2, k^i*binomial(n, 2*i+1))
(Magma)
A099173:= func< n, k | (&+[n^j*Binomial(k, 2*j+1): j in [0..Floor(k/2)]]) >;
[A099173(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 17 2023
(SageMath)
def A099173(n, k): return sum( n^j*binomial(k, 2*j+1) for j in range((k//2)+1) )
flatten([[A099173(n, k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Feb 17 2023
CROSSREFS
Rows m: A001477 (m=0), A000079 (m=1), A000129 (m=2), A002605 (m=3), A015518 (m=4), A063727 (m=5), A002532 (m=6), A083099 (m=7), A015519 (m=8), A003683 (m=9), A002534 (m=10), A083102 (m=11), A015520 (m=12), A091914 (m=13).
Columns q: A000004 (q=0), A000012 (q=1), A009056 (q=2), A008586 (q=3).
Main diagonal gives A357502.
Sequence in context: A350168 A262881 A336820 * A293377 A159880 A289251
KEYWORD
nonn,tabl
AUTHOR
Ralf Stephan, Oct 13 2004
STATUS
approved