The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A083099 a(n) = 2*a(n-1) + 6*a(n-2), a(0) = 0, a(1) = 1. 30
 0, 1, 2, 10, 32, 124, 440, 1624, 5888, 21520, 78368, 285856, 1041920, 3798976, 13849472, 50492800, 184082432, 671121664, 2446737920, 8920205824, 32520839168, 118562913280, 432250861568, 1575879202816, 5745263575040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n+1) = a(n) + A083098(n+1). A083098(n+1)/a(n) converges to sqrt(7). The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the denominators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 7 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(7). - Cino Hilliard, Sep 25 2005 Pisano period lengths: 1, 1, 2, 1, 12, 2, 7, 1, 6, 12, 60, 2,168, 7, 12, 1,288, 6, 18, 12, ... - R. J. Mathar, Aug 10 2012 a(n) is divisible by 2^ceiling(n/2), see formula below. - Ralf Stephan, Dec 24 2013 Connect the center of a regular hexagon with side length 1 with its six vertices. a(n) is the number of paths of length n from the center to any of its vertices. Number of paths of length n from the center to itself is 6*a(n-1). - Jianing Song, Apr 20 2019 REFERENCES John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (2,6). FORMULA G.f.: x/(1 - 2*x - 6*x^2). From Paul Barry, Sep 29 2004: (Start) E.g.f.: (d/dx)(exp(x)*sinh(sqrt(7)*x)/sqrt(7)); a(n-1) = Sum_{k=0..n} binomial(n, 2k+1)*7^k. (End) a(n) = -(1/14)*(1 - sqrt(7))^n*sqrt(7) + (1/14)*(1 + sqrt(7))^n*sqrt(7). - Paolo P. Lava, Jun 10 2008 Simplified formula: a(n) = ((1 + sqrt(7))^n - (1 - sqrt(7))^n)/sqrt(28). - Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009 G.f.: G(0)*x/(2*(1-x)), where G(k) = 1 + 1/(1 - x*(7*k-1)/(x*(7*k+6) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013 a(2n) = 2^n * A154245(n), a(2n+1) = 2^n * (5*A154245(n) - 9*A154245(n-1)). - Ralf Stephan, Dec 24 2013 a(n) = Sum_{k=1,3,5,...<=n} binomial(n,k)*7^((k-1)/2). - Vladimir Shevelev, Feb 06 2014 MAPLE A083099 := proc(n)     option remember;     if n <= 1 then         n;     else         2*procname(n-1)+6*procname(n-2) ;     end if; end proc: # R. J. Mathar, Sep 23 2016 MATHEMATICA CoefficientList[Series[x/(1-2x-6x^2), {x, 0, 25}], x] (* Adapted for offset 0 by Vincenzo Librandi, Feb 07 2014 *) Expand[Table[((1 + Sqrt)^n - (1 - Sqrt)^n)7/(14Sqrt), {n, 0, 25}]] (* Zerinvary Lajos, Mar 22 2007 *) LinearRecurrence[{2, 6}, {0, 1}, 25] (* Sture Sjöstedt, Dec 06 2011 *) PROG (Sage) [lucas_number1(n, 2, -6) for n in range(0, 25)] # Zerinvary Lajos, Apr 22 2009 (PARI) a(n)=([0, 1; 6, 2]^n*[0; 1])[1, 1] \\ Charles R Greathouse IV, May 10 2016 (PARI) x='x+O('x^30); concat(, Vec(x/(1-2*x-6*x^2))) \\ G. C. Greubel, Jan 24 2018 (MAGMA) I:=[0, 1]; [n le 2 select I[n] else 2*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018 CROSSREFS The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519. Sequence in context: A034555 A084154 A265836 * A032095 A328039 A264960 Adjacent sequences:  A083096 A083097 A083098 * A083100 A083101 A083102 KEYWORD nonn,easy AUTHOR Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 30 20:55 EST 2020. Contains 338812 sequences. (Running on oeis4.)