The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A083099 a(n) = 2*a(n-1) + 6*a(n-2), a(0) = 0, a(1) = 1. 32
 0, 1, 2, 10, 32, 124, 440, 1624, 5888, 21520, 78368, 285856, 1041920, 3798976, 13849472, 50492800, 184082432, 671121664, 2446737920, 8920205824, 32520839168, 118562913280, 432250861568, 1575879202816, 5745263575040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n+1) = a(n) + A083098(n+1). A083098(n+1)/a(n) converges to sqrt(7). The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the denominators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 7 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(7). - Cino Hilliard, Sep 25 2005 Pisano period lengths: 1, 1, 2, 1, 12, 2, 7, 1, 6, 12, 60, 2,168, 7, 12, 1,288, 6, 18, 12, ... - R. J. Mathar, Aug 10 2012 a(n) is divisible by 2^ceiling(n/2), see formula below. - Ralf Stephan, Dec 24 2013 Connect the center of a regular hexagon with side length 1 with its six vertices. a(n) is the number of paths of length n from the center to any of its vertices. Number of paths of length n from the center to itself is 6*a(n-1). - Jianing Song, Apr 20 2019 REFERENCES John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Project Euler, Problem 752, sequence beta(n). Index entries for linear recurrences with constant coefficients, signature (2,6). FORMULA G.f.: x/(1 - 2*x - 6*x^2). From Paul Barry, Sep 29 2004: (Start) E.g.f.: (d/dx)(exp(x)*sinh(sqrt(7)*x)/sqrt(7)); a(n-1) = Sum_{k=0..n} binomial(n, 2k+1)*7^k. (End) a(n) = -(1/14)*(1 - sqrt(7))^n*sqrt(7) + (1/14)*(1 + sqrt(7))^n*sqrt(7). - Paolo P. Lava, Jun 10 2008 Simplified formula: a(n) = ((1 + sqrt(7))^n - (1 - sqrt(7))^n)/sqrt(28). - Al Hakanson (hawkuu(AT)gmail.com), Jan 05 2009 G.f.: G(0)*x/(2*(1-x)), where G(k) = 1 + 1/(1 - x*(7*k-1)/(x*(7*k+6) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013 a(2n) = 2^n * A154245(n), a(2n+1) = 2^n * (5*A154245(n) - 9*A154245(n-1)). - Ralf Stephan, Dec 24 2013 a(n) = Sum_{k=1,3,5,...<=n} binomial(n,k)*7^((k-1)/2). - Vladimir Shevelev, Feb 06 2014 a(n) = i^(n-1)*6^((n-1)/2)*ChebyshevU(n-1, -i/sqrt(6)). - G. C. Greubel, Jun 01 2023 MAPLE A083099 := proc(n) option remember; if n <= 1 then n; else 2*procname(n-1)+6*procname(n-2) ; end if; end proc: # R. J. Mathar, Sep 23 2016 MATHEMATICA CoefficientList[Series[x/(1-2x-6x^2), {x, 0, 25}], x] (* Adapted for offset 0 by Vincenzo Librandi, Feb 07 2014 *) Expand[Table[((1 + Sqrt)^n - (1 - Sqrt)^n)7/(14Sqrt), {n, 0, 25}]] (* Zerinvary Lajos, Mar 22 2007 *) LinearRecurrence[{2, 6}, {0, 1}, 25] (* Sture Sjöstedt, Dec 06 2011 *) PROG (Sage) [lucas_number1(n, 2, -6) for n in range(0, 25)] # Zerinvary Lajos, Apr 22 2009 (PARI) a(n)=([0, 1; 6, 2]^n*[0; 1])[1, 1] \\ Charles R Greathouse IV, May 10 2016 (PARI) my(x='x+O('x^30)); concat(, Vec(x/(1-2*x-6*x^2))) \\ G. C. Greubel, Jan 24 2018 (Magma) [n le 2 select n-1 else 2*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 24 2018 (SageMath) A083099=BinaryRecurrenceSequence(2, 6, 0, 1) [A083099(n) for n in range(41)] # G. C. Greubel, Jun 01 2023 CROSSREFS The following sequences (and others) belong to the same family: A000129, A001333, A002532, A002533, A002605, A015518, A015519, A026150, A046717, A063727, A083098, A083099, A083100, A084057. Cf. A154245, A291008. Sequence in context: A034555 A084154 A265836 * A032095 A328039 A264960 Adjacent sequences: A083096 A083097 A083098 * A083100 A083101 A083102 KEYWORD nonn,easy AUTHOR Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 23 21:37 EDT 2023. Contains 365554 sequences. (Running on oeis4.)