login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083101
a(n) = 2*a(n-1) + 10*a(n-2).
3
1, 12, 34, 188, 716, 3312, 13784, 60688, 259216, 1125312, 4842784, 20938688, 90305216, 389997312, 1683046784, 7266066688, 31362601216, 135385869312, 584397750784, 2522654194688, 10889285897216, 47005113741312
OFFSET
0,2
COMMENTS
a(n)/A083102(n) converges to sqrt(11).
a(n-1) is the number of compositions of n when there are 1 type of 1 and 11 types of other natural numbers. - Milan Janjic, Aug 13 2010
A133294 is an essentially identical sequence (with a different start). - N. J. A. Sloane, Dec 31 2012
FORMULA
a(n+1) = a(n) + 11*A083102(n).
G.f.: (1+10*x)/(1-2*x-10*x^2).
If p[1]=1, and p[i]=11, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=det A. - Milan Janjic, Apr 29 2010
MATHEMATICA
CoefficientList[Series[(1+10x)/(1-2x-10x^2), {x, 0, 25}], x]
LinearRecurrence[{2, 10}, {1, 12}, 22] (* Ray Chandler, Sep 23 2015 *)
PROG
(PARI) x='x+O('x^30); Vec((1+10*x)/(1-2*x-10*x^2)) \\ G. C. Greubel, Jan 08 2018
(Magma) I:=[1, 12]; [n le 2 select I[n] else 2*Self(n-1) + 10*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 08 2018
CROSSREFS
Sequence in context: A009760 A078194 A034510 * A133294 A082240 A088596
KEYWORD
easy,nonn
AUTHOR
Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003
STATUS
approved