OFFSET
0,3
COMMENTS
Binomial transform of [1, 0, 11, 0, 121, 0, 1331, 0, 14641, 0, ...]=: powers of 11 (A001020) with interpolated zeros. - Philippe Deléham, Dec 02 2008
A083101 is an essentially identical sequence (with a different start). - N. J. A. Sloane, Dec 31 2012
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,10).
FORMULA
a(n) = Sum_{k=0..n} A098158(n,k)*11^(n-k).
G.f.: (1-x)/(1-2*x-10*x^2).
a(n) = A083101(n-1) for n >= 1.
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - x*(11*k-1)/( x*(11*k+10) - 1/G(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 14 2013
MATHEMATICA
a[n_]:= Simplify[((1+Sqrt[11])^n + (1-Sqrt[11])^n)/2]; Array[a, 30, 0] (* Or *) CoefficientList[Series[(1-x)/(1-2x-10x^2), {x, 0, 30}], x] (* Or *) LinearRecurrence[{2, 10}, {1, 1}, 30] (* Robert G. Wilson v, Sep 18 2013 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-x)/(1-2*x-10*x^2)) \\ G. C. Greubel, Aug 02 2019
(Magma) I:=[1, 1]; [n le 2 select I[n] else 2*Self(n-1) +10*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019
(Sage) ((1-x)/(1-2*x-10*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019
(GAP) a:=[1, 1];; for n in [3..30] do a[n]:=2*a[n-1]+10*a[n-2]; od; a; # G. C. Greubel, Aug 02 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Dec 20 2007
EXTENSIONS
Terms a(23) onward added by G. C. Greubel, Aug 02 2019
STATUS
approved