This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090042 a(n) = 2*a(n-1) + 11*a(n-2) for n > 1, a(0) = a(1) = 1. 9
 1, 1, 13, 37, 217, 841, 4069, 17389, 79537, 350353, 1575613, 7005109, 31341961, 139740121, 624241813, 2785624957, 12437909857, 55517694241, 247852396909, 1106399430469, 4939175226937, 22048744189033, 98428415874373, 439393017828109, 1961498610274321, 8756320416657841 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Binomial transform of A001021 (powers of 12), with interpolated zeros. For n > 0, a(n) = term (1,1) in the n-th power of the 2 X 2 matrix [1,3; 4,1]. - Gary W. Adamson, Aug 06 2010 a(n) is the number of compositions of n when there are 1 type of 1 and 12 types of other natural numbers. - Milan Janjic, Aug 13 2010 LINKS Muniru A Asiru, Table of n, a(n) for n = 0..319 Index entries for linear recurrences with constant coefficients, signature (2,11). FORMULA E.g.f.: exp(x)*cosh(2*sqrt(3)*x). a(n) = ((1 + 2*sqrt(3))^n + (1 - 2*sqrt(3))^n)/2. a(n) = Sum_{k=0..n} A098158(n,k)*12^(n-k). - Philippe Deléham, Dec 26 2007 If p[1]=1, and p[i]=12, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n)=det A. - Milan Janjic, Apr 29 2010 From Wolfdieter Lang, Feb 17 2018: (Start) G.f.: (1-x)/(1 - 2*x - 11*x^2). (See the Mathematica program.) a(n) = b(n+1) - b(n), with b(n) = A015520(n). This leads to the Binet-de Moivre type formula given in the Mathematica program. a(n) = (i*sqrt(11))^n*(S(n,-2*i/sqrt(11)) + (i/sqrt(11))*S(n-1,-2*i/sqrt(11))), n >= 0, with Chebyshev S polynomials (coefficients in A049310), with S(-2, x) = -1, S(-1, x) = 0 and i = sqrt(-1). Via Cayley-Hamilton. See the Gary W. Adamson comment above or the Mathematica program of Robert G. Wilson v with another matrix. (End) MAPLE a := proc(n) option remember: if n=0 then 1 elif n=1 then 1 elif n>=2 then 2*procname(n-1) + 11*procname(n-2) fi; end: seq(a(n), n=0..25); # Muniru A Asiru, Feb 18 2018 MATHEMATICA a[n_]:= Simplify[((1+Sqrt[12])^n +(1-Sqrt[12])^n)/2]; Array[a, 30, 0] (* or *) CoefficientList[Series[(x-1)/(11x^2+2x-1), {x, 0, 30}], x] (* or *) Table[ MatrixPower[{{1, 2}, {6, 1}}, n][[1, 1]], {n, 0, 30}] (* Robert G. Wilson v, Sep 18 2013 and modified per Wolfdieter Lang Feb 17 2018 *) LinearRecurrence[{2, 11}, {1, 1}, 30] (* Ray Chandler, Aug 01 2015 *) PROG (PARI) x='x+O('x^30); Vec((1-x)/(1-2*x-11*x^2)) \\ Altug Alkan, Feb 17 2018 (GAP)  a := [1, 1];; for n in [3..30] do a[n] := 2*a[n-1]+ 11*a[n-2]; od; a; # Muniru A Asiru, Feb 18 2018 (MAGMA) I:=[1, 1]; [n le 2 select I[n] else 2*Self(n-1) +11*Self(n-2): n in [1..30]]; // G. C. Greubel, Aug 02 2019 (Sage) ((1-x)/(1-2*x-11*x^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Aug 02 2019 CROSSREFS Cf. A049310, A015520. Sequence in context: A193646 A155236 A155277 * A266882 A078952 A206279 Adjacent sequences:  A090039 A090040 A090041 * A090043 A090044 A090045 KEYWORD easy,nonn AUTHOR Paul Barry, Nov 20 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 7 03:27 EST 2019. Contains 329836 sequences. (Running on oeis4.)