The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A078952 Primes p such that the differences between the 5 consecutive primes starting with p are (4,2,4,6). 2
 13, 37, 223, 1087, 1423, 1483, 2683, 4783, 20743, 27733, 29017, 33343, 33613, 35527, 42457, 44263, 45817, 55813, 93487, 108877, 110917, 113143, 118897, 151237, 165703, 187123, 198823, 203653, 205417, 221713, 234187, 234457, 258607 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Equivalently, p, p+4, p+6, p+10 and p+16 are consecutive primes. Subsequence of A052378. - R. J. Mathar, Feb 11 2013 All terms = {7, 13} mod 30. - Muniru A Asiru, Aug 21 2017 LINKS R. J. Mathar, Table of n, a(n) for n = 1..1000 R. J. Mathar, Table of Prime Gap Constellations EXAMPLE 37 is in the sequence since 37, 41, 43, 47 and 53 are consecutive primes. MAPLE for i from 1 to 10^7 do if ithprime(i+1)=ithprime(i)+4 and ithprime(i+2)=ithprime(i)+6 and ithprime(i+3)=ithprime(i)+10 and ithprime(i+4)=ithprime(i)+16 then print(ithprime(i)); fi; od; # Muniru A Asiru, Aug 21 2017 MATHEMATICA With[{s = Differences@ Prime@ Range[10^5]}, Prime[SequencePosition[s, {4, 2, 4, 6}][[All, 1]]]] (* Michael De Vlieger, Aug 21 2017 *) PROG (GAP) K:=2*10^7+1;; # to get all terms <= K. P:=Filtered([1, 3..K], IsPrime);; I:=[4, 2, 4, 6];; P1:=List([1..Length(P)-1], i->P[i+1]-P[i]);; P2:=List([1..Length(P)-Length(I)], i->[P1[i], P1[i+1], P1[i+2], P1[i+3]]);; P3:=List(Positions(P2, I), i->P[i]); # Muniru A Asiru, Aug 21 2017 (PARI) lista(nn) = forprime(p=3, nn, if(nextprime(p+1)==p+4 && nextprime(p+5)==p+6 && nextprime(p+7)==p+10 && nextprime(p+11)==p+16, print1(p, ", "))); \\ Altug Alkan, Aug 21 2017 CROSSREFS Cf. A001223, A022006, A022007, A078866, A078867, A078946-A078971. Sequence in context: A155277 A090042 A266882 * A206279 A130621 A309594 Adjacent sequences: A078949 A078950 A078951 * A078953 A078954 A078955 KEYWORD nonn AUTHOR Labos Elemer, Dec 19 2002 EXTENSIONS Edited by Dean Hickerson, Dec 20 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 10 09:32 EDT 2024. Contains 375786 sequences. (Running on oeis4.)