|
|
A078952
|
|
Primes p such that the differences between the 5 consecutive primes starting with p are (4,2,4,6).
|
|
2
|
|
|
13, 37, 223, 1087, 1423, 1483, 2683, 4783, 20743, 27733, 29017, 33343, 33613, 35527, 42457, 44263, 45817, 55813, 93487, 108877, 110917, 113143, 118897, 151237, 165703, 187123, 198823, 203653, 205417, 221713, 234187, 234457, 258607
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Equivalently, p, p+4, p+6, p+10 and p+16 are consecutive primes.
|
|
LINKS
|
|
|
EXAMPLE
|
37 is in the sequence since 37, 41, 43, 47 and 53 are consecutive primes.
|
|
MAPLE
|
for i from 1 to 10^7 do if ithprime(i+1)=ithprime(i)+4 and ithprime(i+2)=ithprime(i)+6 and ithprime(i+3)=ithprime(i)+10 and ithprime(i+4)=ithprime(i)+16 then print(ithprime(i)); fi; od; # Muniru A Asiru, Aug 21 2017
|
|
MATHEMATICA
|
With[{s = Differences@ Prime@ Range[10^5]}, Prime[SequencePosition[s, {4, 2, 4, 6}][[All, 1]]]] (* Michael De Vlieger, Aug 21 2017 *)
|
|
PROG
|
(GAP)
K:=2*10^7+1;; # to get all terms <= K.
P:=Filtered([1, 3..K], IsPrime);; I:=[4, 2, 4, 6];;
P1:=List([1..Length(P)-1], i->P[i+1]-P[i]);;
P2:=List([1..Length(P)-Length(I)], i->[P1[i], P1[i+1], P1[i+2], P1[i+3]]);;
(PARI) lista(nn) = forprime(p=3, nn, if(nextprime(p+1)==p+4 && nextprime(p+5)==p+6 && nextprime(p+7)==p+10 && nextprime(p+11)==p+16, print1(p, ", "))); \\ Altug Alkan, Aug 21 2017
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|