The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A266882 Primes p(n) such that p(n) + p(n+3) = p(n+1) + p(n+2) and p(n) + p(n+4) = p(n+2) + p(n+3). 0
 13, 37, 223, 1087, 1423, 1483, 2683, 4783, 6079, 7331, 7547, 11057, 12269, 12401, 12641, 17333, 19471, 20743, 21799, 23027, 27733, 28097, 29017, 29389, 30631, 30859, 33191, 33343, 33587, 33613, 35527, 36551, 42457, 44263, 45817, 48857, 49459, 54499, 55813, 57329, 58151, 59207 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS All terms = {1, 5} mod 6. - Muniru A Asiru, Aug 19 2017 LINKS Table of n, a(n) for n=1..42. EXAMPLE Starting from 13, the five consecutive primes are 13, 17, 19, 23, 29; and they satisfy 13 + 23 = 17 + 19 and 13 + 29 = 23 + 19. So 13 is in the sequence. MAPLE for i from 1 to 10^5 do if ithprime(i)+ithprime(i+3) = ithprime(i+1)+ithprime(i+2) and ithprime(i)+ithprime(i+4) = ithprime(i+2)+ithprime(i+3) then print(ithprime(i)); fi; od; # Muniru A Asiru, Aug 19 2017 MATHEMATICA Prime@ Select[Range@ 6000, And[Prime@ # + Prime[# + 3] == Prime[# + 1] + Prime[# + 2], Prime@ # + Prime[# + 4] == Prime[# + 2] + Prime[# + 3]] &] (* Michael De Vlieger, Jan 05 2016 *) PROG (Python) from sympy import primerange b, c, d, e = 2, 3, 5, 7 for p in primerange(11, 10**9): ... a, b, c, d, e = b, c, d, e, p ... if a + d == b + c and a + e == c + d: ....... print a (PARI) lista(nn) = {for (n=1, nn, if ((prime(n) + prime(n+3) == prime(n+1) + prime(n+2)) && (prime(n) + prime(n+4) == prime(n+2) + prime(n+3)), print1(prime(n), ", ")); ); } \\ Michel Marcus, Jan 05 2016 (GAP) K:=10^7+1;; # to get all terms <= K. P:=Filtered([1, 3..K], IsPrime);; A:=[];; for n in [1..Length(P)-4] do if P[n]+P[n+3]=P[n+1]+P[n+2] and P[n]+P[n+4]=P[n+2]+P[n+3] then Add(A, P[n]); fi; od; A; # Muniru A Asiru, Aug 19 2017 CROSSREFS Subsequence of A022885. Sequence in context: A155236 A155277 A090042 * A078952 A206279 A130621 Adjacent sequences: A266879 A266880 A266881 * A266883 A266884 A266885 KEYWORD nonn AUTHOR Emmanuel Antonio José García, Jan 05 2016 EXTENSIONS More terms from Michel Marcus, Jan 05 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 7 22:13 EDT 2024. Contains 375749 sequences. (Running on oeis4.)