login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266883
Numbers of the form m*(4*m+1)+1, where m = 0,-1,1,-2,2,-3,3,...
5
1, 4, 6, 15, 19, 34, 40, 61, 69, 96, 106, 139, 151, 190, 204, 249, 265, 316, 334, 391, 411, 474, 496, 565, 589, 664, 690, 771, 799, 886, 916, 1009, 1041, 1140, 1174, 1279, 1315, 1426, 1464, 1581, 1621, 1744, 1786, 1915, 1959, 2094, 2140, 2281, 2329, 2476, 2526
OFFSET
0,2
COMMENTS
Also, numbers m such that 16*m-15 is a square. Therefore, the terms 1 and 4 are the only squares in this sequence.
FORMULA
O.g.f.: (1 + 3*x + 3*x^3 + x^4)/((1 + x)^2*(1 - x)^3).
E.g.f.: (5 + 8*x + 4*x^2)*exp(x)/4 -(1 - 2*x)*exp(-x)/4.
a(n) = a(-n-1) = n*(n + 1) + 1 - ((2*n + 1)*(-1)^n - 1)/4 = (2*n + 1)*floor((n + 1)/2) + 1.
a(n) = A002061(n+1) + A001057(n) = A074378(n)+1.
a(n+1) + a(n+2) = A049486(n+3).
MATHEMATICA
Table[n (n + 1) + 1 - ((2 n + 1) (-1)^n - 1)/4, {n, 0, 50}]
LinearRecurrence[{1, 2, -2, -1, 1}, {1, 4, 6, 15, 19}, 60] (* Vincenzo Librandi, Jan 06 2016 *)
PROG
(PARI) vector(50, n, n--; n*(n+1)+1-((2*n+1)*(-1)^n-1)/4)
(PARI) Vec((1+3*x+3*x^3+x^4)/((1+x)^2*(1-x)^3) + O(x^100)) \\ Altug Alkan, Jan 06 2016
(Sage) [n*(n+1)+1-((2*n+1)*(-1)^n-1)/4 for n in range(50)]
(Python) [n*(n+1)+1-((2*n+1)*(-1)**n-1)/4 for n in range(60)]
(Magma) [n*(n+1)+1-((2*n+1)*(-1)^n-1)/4: n in [0..50]];
(Magma) I:=[1, 4, 6, 15, 19]; [n le 5 select I[n] else Self(n-1) + 2*Self(n-2) -2*Self(n-3)-Self(n-4)+Self(n-5): n in [1..60]]; // Vincenzo Librandi, Jan 06 2016
CROSSREFS
Cf. A002061: m*(4*m+2)+1 for m = 0,0,-1,1,-2,2,-3,3, ...
Cf. A174114: m*(4*m+3)+1 for m = 0,-1,1,-2,2,-3,3,-4,4, ...
Cf. A054556: m*(4*m+1)+1 for nonpositive m.
Cf. A054567: m*(4*m+1)+1 for nonnegative m.
Cf. A074378: numbers m such that 16*m+1 is a square.
Sequence in context: A106387 A034771 A294457 * A034764 A119034 A100911
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Jan 05 2016
STATUS
approved