OFFSET
1,1
COMMENTS
k sequence = A106388.
LINKS
FORMULA
j(1)=4, j(2)=6 then j(n)=j(n-2)+11.
a(n) = 11*n - a(n-1) - 12 (with a(1)=4). - Vincenzo Librandi, Nov 13 2010
a(2k-1) = 11k - 7, a(2k) = 11k - 5. - Ralf Stephan, Nov 15 2010
From Bruno Berselli, Nov 16 2010: (Start)
a(n) = (22*n - 7*(-1)^n - 13)/4.
G.f.: x*(4+2*x+5*x^2)/((1+x)*(1-x)^2).
a(n) - a(n-1) - a(n-2) + a(n-3) = 0 for n > 3.
a(n) - a(n-2) = 11 for n > 2.
a(n) - 2*a(n-1) + a(n-2) = -7*(-1)^n for n > 2. (End)
MATHEMATICA
Select[Range[320], Divisible[6#^2+6#+1, 11]&] (* Harvey P. Dale, Sep 10 2011 *)
PROG
(PARI) Vec((4+2*x+5*x^2)/(1+x)/(1-x)^2+O(x^99)) \\ Charles R Greathouse IV, Dec 28 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Pierre CAMI, May 01 2005
STATUS
approved