login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A083098 a(n) = 2*a(n-1) + 6*a(n-2). 23
1, 1, 8, 22, 92, 316, 1184, 4264, 15632, 56848, 207488, 756064, 2757056, 10050496, 36643328, 133589632, 487039232, 1775616256, 6473467904, 23600633344, 86042074112, 313687948288, 1143628341248, 4169384372224, 15200538791936 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n+1) = a(n) + 7*A083099(n-1); a(n+1)/A083099(n) converges to sqrt(7).

Binomial transform of expansion of cosh(sqrt(7)x) (A000420 with interpolated zeros: 1, 0, 7, 0, 49, 0, 343, 0, ...).

The same sequence may be obtained by the following process. Starting a priori with the fraction 1/1, the numerators of fractions built according to the rule: add top and bottom to get the new bottom, add top and 7 times the bottom to get the new top. The limit of the sequence of fractions is sqrt(7). - Cino Hilliard, Sep 25 2005

a(n) is the number of compositions of n when there are 1 type of 1 and 7 types of other natural numbers. - Milan Janjic, Aug 13 2010

REFERENCES

John Derbyshire, Prime Obsession, Joseph Henry Press, April 2004, see p. 16.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (2,6).

FORMULA

G.f.: (1-x)/(1-2*x-6*x^2).

a(n) = (1+sqrt(7))^n/2 + (1-sqrt(7))^n/2.

E.g.f.: exp(x)*cosh(sqrt(7)x).

a(n) = Sum_{k=0..n} A098158(n,k)*7^(n-k). - Philippe Deléham, Dec 26 2007

If p[1]=1, and p[i]=7, (i>1), and if A is Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n) = det A. - Milan Janjic, Apr 29 2010

G.f.: G(0)/2, where G(k)= 1 + 1/(1 - x*(7*k-1)/(x*(7*k+6) - 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013

MATHEMATICA

CoefficientList[Series[(1+6x)/(1-2x-6x^2), {x, 0, 25}], x]

LinearRecurrence[{2, 6}, {1, 1}, 25] (* Sture Sjöstedt, Dec 06 2011 *)

a[n_] := Simplify[((1 + Sqrt[7])^n + (1 - Sqrt[7])^n)/2]; Array[a, 25, 0] (* Robert G. Wilson v, Sep 18 2013 *)

PROG

(Sage) [lucas_number2(n, 2, -6)/2 for n in range(0, 25)] # Zerinvary Lajos, Apr 30 2009

(PARI) x='x+O('x^30); Vec((1-x)/(1-2*x-6*x^2)) \\ G. C. Greubel, Jan 08 2018

(MAGMA) I:=[1, 1]; [n le 2 select I[n] else 2*Self(n-1) + 6*Self(n-2): n in [1..30]]; // G. C. Greubel, Jan 08 2018

CROSSREFS

The following sequences (and others) belong to the same family: A001333, A000129, A026150, A002605, A046717, A015518, A084057, A063727, A002533, A002532, A083098, A083099, A083100, A015519.

Sequence in context: A140418 A200081 A199110 * A322070 A033456 A264631

Adjacent sequences:  A083095 A083096 A083097 * A083099 A083100 A083101

KEYWORD

easy,nonn

AUTHOR

Mario Catalani (mario.catalani(AT)unito.it), Apr 22 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 30 20:55 EST 2020. Contains 338812 sequences. (Running on oeis4.)