login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084154
Binomial transform of sinh(x)*cosh(sqrt(2)*x).
3
0, 1, 2, 10, 32, 116, 392, 1352, 4608, 15760, 53792, 183712, 627200, 2141504, 7311488, 24963200, 85229568, 290992384, 993509888, 3392055808, 11581202432, 39540700160, 135000393728, 460920178688, 1573679923200, 5372879343616
OFFSET
0,3
FORMULA
a(n) = 4*a(n-1) - 8*a(n-3) + 4*a(n-4), a(0)=0, a(1)=1, a(2)=2, a(3)=10.
a(n) = ((2+sqrt(2))^n + (2-sqrt(2))^n - sqrt(2)^n - (-sqrt(2))^n)/4.
G.f.: x*(1-2*x+2*x^2)/((1-2*x^2)*(1-4*x+2*x^2)).
E.g.f.: exp(x)*sinh(x)*cosh(sqrt(2)*x).
MATHEMATICA
With[{nn=30}, CoefficientList[Series[Exp[x]Sinh[x]Cosh[Sqrt[2]x], {x, 0, nn}], x] Range[0, nn]!] (* or *) LinearRecurrence[{4, 0, -8, 4}, {0, 1, 2, 10}, 30] (* Harvey P. Dale, Jun 19 2016 *)
PROG
(PARI) x='x+O('x^30); concat([0], Vec(x*(1-2*x+2*x^2)/((1-2*x^2)*(1-4*x+2*x^2)))) \\ G. C. Greubel, Aug 16 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1-2*x+2*x^2)/((1-2*x^2)*(1-4*x+2*x^2)))); // G. C. Greubel, Aug 16 2018
CROSSREFS
Cf. A084155.
Sequence in context: A324172 A367704 A034555 * A265836 A083099 A032095
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 16 2003
STATUS
approved