login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084155
A Pell-related fourth-order recurrence.
3
0, 1, 4, 19, 88, 401, 1804, 8051, 35760, 158401, 700564, 3095731, 13673224, 60375953, 266559388, 1176763859, 5194762080, 22931453953, 101225940772, 446836798675, 1972442421688, 8706804701201, 38433749994028
OFFSET
0,3
COMMENTS
Binomial transform of A084154.
FORMULA
a(n) = (A083878(n) - A001333(n))/2.
a(n) = 8*a(n-1) - 18*a(n-2) + 8*a(n-3) + 7*a(n-4), a(0)=0, a(1)=1, a(2)=4, a(3)=19.
a(n) = ((3+sqrt(2))^n +(3-sqrt(2))^n -(1+sqrt(2))^n -(1-sqrt(2))^n)/4.
G.f.: x*(1-4*x+5*x^2)/((1-2*x-x^2)*(1-6*x+7*x^2)).
E.g.f.: exp(2*x)*sinh(x)*cosh(sqrt(2)*x).
MAPLE
seq(coeff(series(x*(1-4*x+5*x^2)/((1-2*x-x^2)*(1-6*x+7*x^2)), x, n+1), x, n), n = 0 .. 25); # Muniru A Asiru, Oct 18 2018
MATHEMATICA
LinearRecurrence[{8, -18, 8, 7}, {0, 1, 4, 19}, 30] (* Harvey P. Dale, Aug 16 2015 *)
PROG
(PARI) m=40; v=concat([0, 1, 4, 19], vector(m-4)); for(n=5, m, v[n] = 8*v[n-1] -18*v[n-2] +8*v[n-3] +7*v[n-4]); v \\ G. C. Greubel, Oct 17 2018
(Magma) I:=[0, 1, 4, 19]; [n le 4 select I[n] else 8*Self(n-1) -18*Self(n-2) +8*Self(n-3) +7*Self(n-4): n in [1..40]]; // G. C. Greubel, Oct 17 2018
(GAP) a:=[0, 1, 4, 19];; for n in [5..25] do a[n]:=8*a[n-1]-18*a[n-2]+8*a[n-3]+7*a[n-4]; od; a; # Muniru A Asiru, Oct 18 2018
CROSSREFS
Sequence in context: A357572 A291416 A192526 * A015530 A256959 A181880
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 16 2003
STATUS
approved