login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A256959
a(0)=1, a(1)=4; thereafter a(n) = 13*4^n/8-2^(n+1)+1.
1
1, 4, 19, 89, 385, 1601, 6529, 26369, 105985, 424961, 1701889, 6811649, 27254785, 109035521, 436174849, 1744764929, 6979190785, 27917025281, 111668625409, 446675550209, 1786704297985, 7146821386241, 28587293933569, 114349192511489, 457396803600385
OFFSET
0,2
LINKS
FORMULA
a(n) = 7*a(n-1)-14*a(n-2)+8*a(n-3). - Colin Barker, Jun 05 2015
G.f.: (4*x^4-4*x^3-5*x^2+3*x-1) / ((x-1)*(2*x-1)*(4*x-1)). - Colin Barker, Jun 05 2015
a(n) = (2^n)^2 + (2^n-1)^2 - (2^(n-1))^2 - 2*(2^(n-2))^2 (see (4) in arXiv link). - Michel Marcus, Jun 06 2015
MATHEMATICA
Join[{1, 4}, Table[13 4^n/8 - 2^(n + 1) + 1, {n, 2, 40}]] (* Vincenzo Librandi, Jun 06 2015 *)
LinearRecurrence[{7, -14, 8}, {1, 4, 19, 89, 385}, 30] (* Harvey P. Dale, Feb 20 2020 *)
PROG
(PARI) Vec((4*x^4-4*x^3-5*x^2+3*x-1) / ((x-1)*(2*x-1)*(4*x-1)) + O(x^100)) \\ Colin Barker, Jun 05 2015
(Magma) I:=[1, 4, 19, 89, 385]; [n le 5 select I[n] else 7*Self(n-1)-14*Self(n-2)+8*Self(n-3): n in [1..40]]; // Vincenzo Librandi, Jun 06 2015
CROSSREFS
Sequence in context: A192526 A084155 A015530 * A181880 A291016 A010907
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 14 2015
STATUS
approved