login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A010907
Pisot sequence E(4,19), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ).
2
4, 19, 90, 426, 2016, 9541, 45154, 213697, 1011348, 4786332, 22651920, 107203069, 507352048, 2401107571, 11363544486, 53779407822, 254517831936, 1204537747753, 5700626846950, 26978935702753, 127681216679304, 604267465267128, 2859772009358880, 13534231802298265, 64052459384483260, 303136344428812723, 1434630991482656082, 6789572149788327282
OFFSET
0,1
REFERENCES
Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016.
LINKS
D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305
D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.
S. B. Ekhad, N. J. A. Sloane, D. Zeilberger, Automated proofs (or disproofs) of linear recurrences satisfied by Pisot Sequences, arXiv:1609.05570 [math.NT] (2016)
FORMULA
Theorem: a(n) = 4 a(n - 1) + 3 a(n - 2) + 2 a(n - 3) + a(n - 4). (Proved using the PtoRv program of Ekhad-Sloane-Zeilberger.) - N. J. A. Sloane, Sep 09 2016
G.f.: -(x^3+2*x^2+3*x+4)/(x^4+2*x^3+3*x^2+4*x-1). [Colin Barker, Nov 29 2012] (This follows from the above recurrence. - N. J. A. Sloane, Sep 09 2016)
MATHEMATICA
PSE[a_, b_, n_]:=Join[{x=a, y=b}, Table[z=Floor[y^2/x+1/2]; x=y; y=z, {n}]]; A010907=PSE[4, 19, 20] (* Zak Seidov, Mar 24 2011 *)
nxt[{a_, b_}]:={b, Floor[b^2/a+1/2]}; Transpose[NestList[nxt, {4, 19}, 20]] [[1]] (* Harvey P. Dale, Mar 13 2016 *)
CROSSREFS
Cf. A077922.
Sequence in context: A256959 A181880 A291016 * A229242 A087449 A004253
KEYWORD
nonn
AUTHOR
STATUS
approved