login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010905 Pisot sequence E(4,15): a(n) = floor(a(n-1)^2/a(n-2)+1/2) for n>1, a(0)=4, a(1)=15. 2
4, 15, 56, 209, 780, 2911, 10864, 40545, 151316, 564719, 2107560, 7865521, 29354524, 109552575, 408855776, 1525870529, 5694626340, 21252634831, 79315912984, 296011017105, 1104728155436, 4122901604639, 15386878263120, 57424611447841, 214311567528244 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

REFERENCES

Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305

D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (4, -1).

FORMULA

a(n) = 2a(n-1) - a(n-2) for n>=2. (Proved using the PtoRv program of Ekhad-Sloane-Zeilberger.) - N. J. A. Sloane, Sep 09 2016

This was conjectured by Colin Barker, Apr 16 2012, and implies the G.f.: (4-x)/(1-4*x+x^2) and the formula a(n) = ((1+sqrt(3))^(2*n+4)-(1-sqrt(3))^(2*n+4))/(2^(n+3)*sqrt(3)).

MATHEMATICA

a[0] = 4; a[1] = 15; a[n_] := a[n] = Floor[a[n - 1]^2/a[n - 2] + 1/2]; Table[a[n], {n, 0, 24}] (* Michael De Vlieger, Jul 27 2016 *)

PROG

(MAGMA) /* By definition: */ [n le 2 select 11*n-7 else Floor(Self(n-1)^2/Self(n-2)+1/2): n in [1..22]]; // Bruno Berselli, Apr 16 2012

(PARI) pisotE(nmax, a1, a2) = {

  a=vector(nmax); a[1]=a1; a[2]=a2;

  for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));

  a

}

pisotE(50, 4, 15) \\ Colin Barker, Jul 27 2016

CROSSREFS

Cf. A010925, A001353, A195503.

Sequence in context: A106707 A125905 A195503 * A026030 A047038 A158500

Adjacent sequences:  A010902 A010903 A010904 * A010906 A010907 A010908

KEYWORD

nonn

AUTHOR

Simon Plouffe

EXTENSIONS

Edited by N. J. A. Sloane, Jul 26 2016 and Sep 09 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 23 02:46 EDT 2017. Contains 286909 sequences.