login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026030
a(n) = T(2n,n-1), where T is defined in A026022.
0
1, 4, 15, 56, 209, 780, 2912, 10880, 40698, 152456, 572033, 2150040, 8095425, 30535260, 115377660, 436698240, 1655607390, 6286707000, 23908446510, 91057063344, 347281885818, 1326262602104, 5071418015120, 19415851639296, 74419447792340
OFFSET
1,2
COMMENTS
a(n) = number of (s(0), s(1), ..., s(2n)) such that s(i) is a nonnegative integer and |s(i) - s(i-1)| = 1 for i = 1,2,...,n, s(0) = 3, s(2n) = 5.
FORMULA
a(n) = C(2n, n-1) - C(2n, n-5). G.f.: (1+x^2C^4)*C^4, where C=(1-sqrt(1-4x))/(2x). - Ralf Stephan, Jan 09 2005
G.f.: 2*x*(1-2*x) / ((1-2*x)*(1-4*x+x^2) + (1-x)*(1-3*x)*sqrt(1-4*x)). - Michael Somos, Jan 08 2012
Conjecture: (n+5)*a(n) -2*(5*n+16)*a(n-1) +(35*n+47)*a(n-2) +2*(-25*n+14)*a(n-3) +12*(2*n-5)*a(n-4)=0. - R. J. Mathar, Jun 15 2014
EXAMPLE
x + 4*x^2 + 15*x^3 + 56*x^4 + 209*x^5 + 780*x^6 + 2912*x^7 + 10880*x^8 + ...
PROG
(PARI) {a(n) = binomial( 2*n, n-1) - binomial( 2*n, n-5)} /* Michael Somos, Jan 08 2012 */
CROSSREFS
Cf. A001075.
Sequence in context: A195503 A001353 A010905 * A047038 A158500 A001791
KEYWORD
nonn
STATUS
approved