OFFSET
0,2
COMMENTS
Hankel transform is A008619(n+1). - Paul Barry, May 11 2009
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..1000
Andrei Asinowski and Cyril Banderier, From geometry to generating functions: rectangulations and permutations, arXiv:2401.05558 [cs.DM], 2024. See page 2.
Arturo Merino and Torsten Mütze, Combinatorial generation via permutation languages. III. Rectangulations, arXiv:2103.09333 [math.CO], 2021.
FORMULA
Expansion of (1+x^2*C^4)*C^2, where C = (1-(1-4*x)^(1/2))/(2*x) is g.f. for Catalan numbers, A000108.
a(n) = Sum_{k=0..n} C(n, k)*Sum_{i=0..k} C(k, 2i)*A000108(i+1). - Paul Barry, Jul 18 2003
a(n) = Sum_{k=0..3} A039599(n,k) = A000108(n) + A000245(n) + A000344(n) + A000588(n) = A026012(n) + A000588(n). - Philippe Deléham, Nov 12 2008
a(n) = C(2n,n) - C(2n,n-4). - Paul Barry, May 11 2009
Conjecture: (n+4)*a(n) + 6*(-n-2)*a(n-1) + 4*(2*n-1)*a(n-2) = 0. - R. J. Mathar, Nov 24 2012
a(n) ~ 4^(n+2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Sep 03 2019
E.g.f.: exp(2*x)*(BesselI(0, 2*x) - BesselI(4, 2*x)). - Stefano Spezia, Jan 17 2024
MATHEMATICA
CoefficientList[Series[(1 - 2*x)*(-1 + Sqrt[1 - 4*x] + 2*x)^2 / (4*x^4), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 03 2019 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved