login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A078483 G.f.: -2*x/(1 - 5*x - sqrt(1-4*x) + x*sqrt(1-4*x) + 2*x^2). 2
1, 1, 2, 6, 20, 69, 243, 869, 3145, 11491, 42312, 156807, 584288, 2187298, 8221257, 31009841, 117331070, 445174418, 1693270531, 6454992143, 24657428519, 94363587324, 361741068087, 1388892123038, 5340282880156, 20560742443041, 79259430563491, 305889059254747 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Number of data structures of a certain wreath product type.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

M. D. Atkinson and T. Stitt, Restricted permutations and the wreath product, Preprint, 2002.

M. D. Atkinson and T. Stitt, Restricted permutations and the wreath product, Discrete Math., 259 (2002), 19-36.

FORMULA

a(n) = the upper left term in M^n, where M is the following infinite square production matrix:

1, 1, 0, 0, 0, 0,...

1, 2, 1, 0, 0, 0,...

1, 1, 1, 1, 0, 0,...

1, 1, 1, 1, 1, 0,...

1, 1, 1, 1, 1, 1,...

...

- Gary W. Adamson, Jul 14 2011

a(n) = sum(m=1..n, m*sum(k=1..n-m, ((sum(j=0..m+k, binomial(j,-2*m-k+2*j)*binomial(m+k,j)))* binomial(n-m-1,k-1))/(m+k)))+1. [Vladimir Kruchinin, Oct 11 2011]

G.f.: 1/(1 - (x + x^2 * C(x)^3)) where C(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. for the Catalan numbers A000108. - David Callan, Feb 06 2016

a(n) ~ 3 * 2^(2*n + 2) / (sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Jul 20 2019

Conjecture D-finite with recurrence: n*a(n) +2*(-5*n+4)*a(n-1) +3*(11*n-18)*a(n-2) +(-41*n+102)*a(n-3) +(21*n-64)*a(n-4) +2*(-2*n+7)*a(n-5)=0. - R. J. Mathar, Jan 23 2020

MATHEMATICA

catGF = (1 - Sqrt[1 - 4 x])/(2 x); CoefficientList[Normal[Series[1/(1 - (x + x^2 catGF^3)), {x, 0, 20}]], x] (* David Callan, Feb 06 2016 *)

CoefficientList[Series[-2 x / (1 - 5 x - Sqrt[1 - 4 x] + x Sqrt[1 - 4 x] + 2 x^2), {x, 0, 40}], x] (* Vincenzo Librandi, May 28 2016 *)

PROG

(Maxima)

a(n):=sum(m*sum(((sum(binomial(j, -2*m-k+2*j)*binomial(m+k, j), j, 0, m+k))*binomial(n-m-1, k-1))/(m+k), k, 1, n-m), m, 1, n)+1; // Vladimir Kruchinin, Oct 11 2011

CROSSREFS

Cf. A006318, A078482.

Sequence in context: A094854 A217782 A026029 * A163135 A331951 A047036

Adjacent sequences:  A078480 A078481 A078482 * A078484 A078485 A078486

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jan 04 2003

EXTENSIONS

Replaced definition with g.f. given by Atkinson and Still (2002). - N. J. A. Sloane, May 24 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 06:52 EST 2021. Contains 349543 sequences. (Running on oeis4.)