The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A010904 Pisot sequence E(4,14): a(n) = floor(a(n-1)^2/a(n-2)+1/2) for n>1, a(0)=4, a(1)=14. 4
 4, 14, 49, 172, 604, 2121, 7448, 26154, 91841, 322504, 1132488, 3976785, 13964668, 49037590, 172197809, 604680724, 2123364868, 7456295833, 26183134320, 91943310482, 322863269121, 1133749589840, 3981215131600, 13980224615841, 49092217790004, 172389637059934 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 REFERENCES Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 D. W. Boyd, Some integer sequences related to the Pisot sequences, Acta Arithmetica, 34 (1979), 295-305 D. W. Boyd, Linear recurrence relations for some generalized Pisot sequences, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993. S. B. Ekhad, N. J. A. Sloane, D. Zeilberger, Automated proofs (or disproofs) of linear recurrences satisfied by Pisot Sequences, arXiv:1609.05570 [math.NT] (2016) FORMULA Theorem: a(0)=4, a(1)=14, a(2)=49; for n>2, a(n) = 4*a(n-1)-2*a(n-2)+a(n-3). Proved using the PtoRv program of Ekhad-Sloane-Zeilberger. (Conjectured by Harvey P. Dale, May 02 2012.) - N. J. A. Sloane, Sep 09 2016 MATHEMATICA RecurrenceTable[{a[0] == 4, a[1] == 14, a[n] == Floor[a[n-1]^2/a[n-2] + 1/2]}, a , {n, 30}] (* Harvey P. Dale, May 02 2012 *) PROG (MAGMA) I:=[4, 14]; [n le 2 select I[n] else Floor(Self(n-1)^2/Self(n-2)+1/2): n in [1..25]]; // Bruno Berselli, Sep 03 2013 (PARI) pisotE(nmax, a1, a2) = {   a=vector(nmax); a[1]=a1; a[2]=a2;   for(n=3, nmax, a[n] = floor(a[n-1]^2/a[n-2]+1/2));   a } pisotE(50, 4, 14) \\ Colin Barker, Jul 27 2016 CROSSREFS Sequence in context: A278692 A071733 A291384 * A277084 A071737 A071741 Adjacent sequences:  A010901 A010902 A010903 * A010905 A010906 A010907 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 6 12:19 EDT 2020. Contains 333273 sequences. (Running on oeis4.)