This site is supported by donations to The OEIS Foundation.

 Annual Appeal: Please make a donation to keep the OEIS running. In 2017 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A277084 Pisot sequence L(4,14). 2
 4, 14, 49, 172, 604, 2122, 7456, 26198, 92052, 323444, 1136489, 3993295, 14031289, 49301911, 173232725, 608689936, 2138761243, 7514991434, 26405516950, 92781386582, 326007088306, 1145495077635, 4024940008834, 14142480741305, 49692606865991, 174605518105877 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS Ilya Gutkovskiy, Pisot sequences L(x,y) FORMULA a(n) = ceiling(a(n-1)^2/a(n-2)), a(0) = 4, a(1) = 14. Conjectures: (Start) G.f.: (4 + 2*x - x^2 - 3*x^3 - 2*x^4 - 2*x^5 + 2*x^6 - x^7)/((1 - x)*( 1 - 2*x - 4*x^2 - 4*x^3 - 2*x^4 - x^5 + x^6 - x^7)). a(n) = 3*a(n-1) + 2*a(n-2) - 2*a(n-4) - a(n-5) - 2*a(n-6) + 2*a(n-7) - a(n-8). (End) MATHEMATICA RecurrenceTable[{a[0] == 4, a[1] == 14, a[n] == Ceiling[a[n - 1]^2/a[n - 2]]}, a, {n, 25}] CROSSREFS Cf. A008776 for definitions of Pisot sequences. Cf. A010904 (Pisot sequence E(4,14)), A251221 (seems to be Pisot sequence P(4,14)). Cf. A018910, A020706, A004119, A020707, A048582, A020734. Sequence in context: A071733 A291384 A010904 * A071737 A071741 A211305 Adjacent sequences:  A277081 A277082 A277083 * A277085 A277086 A277087 KEYWORD nonn,easy AUTHOR Ilya Gutkovskiy, Sep 29 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 02:30 EST 2018. Contains 318036 sequences. (Running on oeis4.)