This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A277084 Pisot sequence L(4,14). 2

%I

%S 4,14,49,172,604,2122,7456,26198,92052,323444,1136489,3993295,

%T 14031289,49301911,173232725,608689936,2138761243,7514991434,

%U 26405516950,92781386582,326007088306,1145495077635,4024940008834,14142480741305,49692606865991,174605518105877

%N Pisot sequence L(4,14).

%H Ilya Gutkovskiy, <a href="/A277084/a277084_1.pdf">Pisot sequences L(x,y)</a>

%H <a href="/index/Ph#Pisot">Index entries for Pisot sequences</a>

%F a(n) = ceiling(a(n-1)^2/a(n-2)), a(0) = 4, a(1) = 14.

%F Conjectures: (Start)

%F G.f.: (4 + 2*x - x^2 - 3*x^3 - 2*x^4 - 2*x^5 + 2*x^6 - x^7)/((1 - x)*( 1 - 2*x - 4*x^2 - 4*x^3 - 2*x^4 - x^5 + x^6 - x^7)).

%F a(n) = 3*a(n-1) + 2*a(n-2) - 2*a(n-4) - a(n-5) - 2*a(n-6) + 2*a(n-7) - a(n-8). (End)

%t RecurrenceTable[{a[0] == 4, a[1] == 14, a[n] == Ceiling[a[n - 1]^2/a[n - 2]]}, a, {n, 25}]

%Y Cf. A008776 for definitions of Pisot sequences.

%Y Cf. A010904 (Pisot sequence E(4,14)), A251221 (seems to be Pisot sequence P(4,14)).

%Y Cf. A018910, A020706, A004119, A020707, A048582, A020734.

%K nonn,easy

%O 0,1

%A _Ilya Gutkovskiy_, Sep 29 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 18 03:13 EST 2019. Contains 319260 sequences. (Running on oeis4.)