The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A291016 p-INVERT of (1,1,1,1,1,...), where p(S) = 1 - 4*S + S^2. 2
 4, 19, 90, 426, 2016, 9540, 45144, 213624, 1010880, 4783536, 22635936, 107114400, 506870784, 2398538304, 11350005120, 53708800896, 254152774656, 1202663842560, 5691066407424, 26930415389184, 127436093890560, 603034071008256, 2853587862706176 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Suppose s = (c(0), c(1), c(2), ...) is a sequence and p(S) is a polynomial. Let S(x) = c(0)*x + c(1)*x^2 + c(2)*x^3 + ... and T(x) = (-p(0) + 1/p(S(x)))/x. The p-INVERT of s is the sequence t(s) of coefficients in the Maclaurin series for T(x). Taking p(S) = 1 - S gives the "INVERT" transform of s, so that p-INVERT is a generalization of the "INVERT" transform (e.g., A033453). See A291000 for a guide to related sequences. LINKS Clark Kimberling, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (6,-6). FORMULA G.f.: (4 - 5*x)/(1 - 6*x + 6*x^2). a(n) = 6*a(n-1) - 6*a(n-2) n >= 3. From G. C. Greubel, Jun 06 2023: (Start) a(n) = ((3+sqrt(3))^(n+4) - (3-sqrt(3))^(n+4))/(72*sqrt(3)). a(n) = 6^(n/2)*(4*ChebyshevU(n, sqrt(3/2)) - (5/sqrt(6))*ChebyshevU[n - 1, sqrt(3/2))). E.g.f.: exp(3*x)*(4*cosh(sqrt(3)*x) + (7/sqrt(3))*sinh(sqrt(3)*x)). (End) MATHEMATICA z = 60; s = x/(1-x); p = 1 - 4 s + s^2; Drop[CoefficientList[Series[s, {x, 0, z}], x], 1] (* A000012 *) Drop[CoefficientList[Series[1/p, {x, 0, z}], x], 1] (* A291016 *) LinearRecurrence[{6, -6}, {4, 19}, 40] (* G. C. Greubel, Jun 06 2023 *) PROG (Magma) I:=[4, 19]; [n le 2 select I[n] else 6*(Self(n-1)-Self(n-2)): n in [1..40]]; // G. C. Greubel, Jun 06 2023 (SageMath) A291016=BinaryRecurrenceSequence(6, -6, 4, 19) [A291016(n) for n in range(51)] # G. C. Greubel, Jun 06 2023 CROSSREFS Cf. A000012, A033453, A289780, A291000. Sequence in context: A015530 A256959 A181880 * A010907 A229242 A087449 Adjacent sequences: A291013 A291014 A291015 * A291017 A291018 A291019 KEYWORD nonn,easy AUTHOR Clark Kimberling, Aug 23 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 19:44 EST 2023. Contains 367717 sequences. (Running on oeis4.)