login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Pisot sequence E(4,19), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ).
2

%I #32 Jul 14 2023 14:48:19

%S 4,19,90,426,2016,9541,45154,213697,1011348,4786332,22651920,

%T 107203069,507352048,2401107571,11363544486,53779407822,254517831936,

%U 1204537747753,5700626846950,26978935702753,127681216679304,604267465267128,2859772009358880,13534231802298265,64052459384483260,303136344428812723,1434630991482656082,6789572149788327282

%N Pisot sequence E(4,19), a(n) = floor( a(n-1)^2/a(n-2)+1/2 ).

%D Shalosh B. Ekhad, N. J. A. Sloane and Doron Zeilberger, Automated Proof (or Disproof) of Linear Recurrences Satisfied by Pisot Sequences, Preprint, 2016.

%H Vincenzo Librandi, <a href="/A010907/b010907.txt">Table of n, a(n) for n = 0..200</a>

%H D. W. Boyd, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa34/aa3444.pdf">Some integer sequences related to the Pisot sequences</a>, Acta Arithmetica, 34 (1979), 295-305

%H D. W. Boyd, <a href="https://www.researchgate.net/profile/David_Boyd7/publication/262181133_Linear_recurrence_relations_for_some_generalized_Pisot_sequences_-_annotated_with_corrections_and_additions/links/00b7d536d49781037f000000.pdf">Linear recurrence relations for some generalized Pisot sequences</a>, Advances in Number Theory ( Kingston ON, 1991) 333-340, Oxford Sci. Publ., Oxford Univ. Press, New York, 1993.

%H S. B. Ekhad, N. J. A. Sloane, D. Zeilberger, <a href="http://arxiv.org/abs/1609.05570">Automated proofs (or disproofs) of linear recurrences satisfied by Pisot Sequences</a>, arXiv:1609.05570 [math.NT] (2016)

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4, 3, 2, 1).

%F Theorem: a(n) = 4 a(n - 1) + 3 a(n - 2) + 2 a(n - 3) + a(n - 4). (Proved using the PtoRv program of Ekhad-Sloane-Zeilberger.) - _N. J. A. Sloane_, Sep 09 2016

%F G.f.: -(x^3+2*x^2+3*x+4)/(x^4+2*x^3+3*x^2+4*x-1). [_Colin Barker_, Nov 29 2012] (This follows from the above recurrence. - _N. J. A. Sloane_, Sep 09 2016)

%t PSE[a_,b_,n_]:=Join[{x=a,y=b}, Table[z=Floor[y^2/x+1/2]; x=y; y=z, {n}]]; A010907=PSE[4,19,20] (* _Zak Seidov_, Mar 24 2011 *)

%t nxt[{a_,b_}]:={b,Floor[b^2/a+1/2]}; Transpose[NestList[nxt,{4,19},20]] [[1]] (* _Harvey P. Dale_, Mar 13 2016 *)

%Y Cf. A077922.

%K nonn

%O 0,1

%A _Simon Plouffe_