|
|
A256958
|
|
The integers (shown from -50 on).
|
|
18
|
|
|
-50, -49, -48, -47, -46, -45, -44, -43, -42, -41, -40, -39, -38, -37, -36, -35, -34, -33, -32, -31, -30, -29, -28, -27, -26, -25, -24, -23, -22, -21, -20, -19, -18, -17, -16, -15, -14, -13, -12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
-50,1
|
|
COMMENTS
|
The first 101 terms are the central 101 terms of the integers.
The reason for including this entry is to provide search results for sequences of the form -k, -k+1, -k+2, ... for small positive k.
|
|
LINKS
|
Table of n, a(n) for n=-50..50.
Index entries for linear recurrences with constant coefficients, signature (2,-1).
|
|
FORMULA
|
a(n) = 2 a(n-1) - a(n-2). G.f.: x^(-50)*(-50 + 51*x)/(1 - x)^2. - M. F. Hasler, Apr 18 2015
|
|
MATHEMATICA
|
Range[101] - 51 (* Alonso del Arte, Apr 14 2015 *)
|
|
PROG
|
(MAGMA) [n: n in [-50..50]]; // Vincenzo Librandi, Apr 14 2015
(Sage) Range(-50, 51) # Danny Rorabaugh, Apr 18 2015
(PARI) vector(101, n, n-51) \\ In the spirit of other "programs", but actually the result does not have offset -50. - M. F. Hasler, Apr 19 2015
(PARI) A256958(n)=n \\ M. F. Hasler, Apr 19 2015
|
|
CROSSREFS
|
See A001477 for the nonnegative integers and A000027 for the positive terms.
See A001057, A130472 for other enumerations of the integers.
See also A023443, ..., A023477, A023479, ..., A023482, A022958, ..., A022996; A053615.
The first 101 terms are the 50th row of triangle A196199. - Omar E. Pol, Apr 14 2015
Sequence in context: A248688 A291495 A207141 * A165871 A171652 A078289
Adjacent sequences: A256955 A256956 A256957 * A256959 A256960 A256961
|
|
KEYWORD
|
sign,easy
|
|
AUTHOR
|
Rick L. Shepherd and N. J. A. Sloane, Apr 14 2015
|
|
EXTENSIONS
|
Revised by N. J. A. Sloane, Apr 19 2015 at the suggestion of M. F. Hasler
|
|
STATUS
|
approved
|
|
|
|