login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084157
a(n) = 8*a(n-1) - 16*a(n-2) + 12*a(n-4) with a(0)=0, a(1)=1, a(2)=4, a(3)=22.
2
0, 1, 4, 22, 112, 556, 2704, 13000, 62080, 295312, 1401664, 6644320, 31472896, 149017792, 705395968, 3338614912, 15800258560, 74772443392, 353840161792, 1674425579008, 7923565146112, 37494981225472, 177428889407488
OFFSET
0,3
COMMENTS
Binomial transform of A084156.
FORMULA
a(n) = (A083881(n) - A026150(n))/2.
a(n) = 8*a(n-1) - 16*a(n-2) + 12*a(n-4).
a(n) = ((3+sqrt(3))^n + (3-sqrt(3))^n - (1+sqrt(3))^n - (1-sqrt(3))^n)/4.
G.f.: x*(1-4*x+6*x^2)/((1-2*x-2*x^2)*(1-6*x+6*x^2)).
E.g.f.: exp(2*x)*sinh(x)*cosh(sqrt(3)*x).
From G. C. Greubel, Oct 11 2022: (Start)
a(2*n) = A003462(n)*A026150(2*n) = A003462(n)*A080040(2*n)/2.
a(2*n+1) = (1/2)*(3^(n+1)*A002605(2*n+1) - A026150(2*n+1)). (End)
MATHEMATICA
LinearRecurrence[{8, -16, 0, 12}, {0, 1, 4, 22}, 30] (* Harvey P. Dale, Feb 19 2017 *)
PROG
(Magma) I:=[0, 1, 4, 22]; [n le 4 select I[n] else 8*Self(n-1) -16*Self(n-2) +12*Self(n-4): n in [1..41]]; // G. C. Greubel, Oct 11 2022
(SageMath)
A083881 = BinaryRecurrenceSequence(6, -6, 1, 3)
A026150 = BinaryRecurrenceSequence(2, 2, 1, 1)
def A084157(n): return (A083881(n) - A026150(n))/2
[A084157(n) for n in range(41)] # G. C. Greubel, Oct 11 2022
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 16 2003
STATUS
approved