login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084156
Binomial transform of sinh(x)*cosh(sqrt(3)*x).
3
0, 1, 2, 13, 44, 181, 662, 2521, 9368, 35113, 130922, 489061, 1824836, 6811741, 25420670, 94875313, 354076208, 1321442641, 4931681234, 18405321661, 68689566044, 256353060613, 956722558310, 3570537526921, 13325427195080, 49731172316281, 185599261007162
OFFSET
0,3
FORMULA
a(n) = 4*a(n-1) + 2*a(n-2) - 12*a(n-3) + 3*a(n-4).
a(n) = ((2+sqrt(3))^n + (2-sqrt(3))^n - (sqrt(3))^n - (-sqrt(3))^n)/4.
G.f.: x*(1-2*x+3*x^2)/((1-3*x^2)(1-4*x+x^2)).
E.g.f. : exp(x)*sinh(x)*cosh(sqrt(3)*x).
a(n) = (2*ChebyshevT(n, 2) - (1+(-1)^n)*3^(n/2))/4 = (A001075(n) - A254006(n))/2. - G. C. Greubel, Oct 10 2022
MAPLE
seq((2*simplify(ChebyshevT(n, 2)) - (1+(-1)^n)*3^(n/2))/4, n = 0..30); # G. C. Greubel, Oct 10 2022
MATHEMATICA
LinearRecurrence[{4, 2, -12, 3}, {0, 1, 2, 13}, 30] (* Harvey P. Dale, Feb 01 2014 *)
PROG
(Magma) I:=[0, 1, 2, 13]; [n le 4 select I[n] else 4*Self(n-1)+2*Self(n-2)-12*Self(n-3)+3*Self(n-4): n in [1..30]]; // Vincenzo Librandi, Feb 13 2014
(SageMath)
def A084156(n): return (chebyshev_T(n, 2) - ((n+1)%2)*3^(n/2))/2
[A084156(n) for n in range(31)] # G. C. Greubel, Oct 10 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Paul Barry, May 16 2003
STATUS
approved