login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308731
a(n) is the sum of the terms of the symmetric square array defined by M(i,j) = prime(i)+i-j for i >= j and M(i,j) = M(j,i) if i < j.
1
2, 13, 44, 105, 224, 397, 660, 1001, 1464, 2105, 2866, 3849, 5030, 6373, 7946, 9829, 12048, 14489, 17310, 20459, 23872, 27731, 31972, 36707, 42060, 47861, 54022, 60663, 67688, 75225, 83902, 93147, 103108, 113543, 125014, 136995, 149788, 163419, 177760, 192987, 209126, 225871, 243912, 262595, 282108
OFFSET
1,1
FORMULA
a(n) = a(n-1) + (2n-1)*prime(n) + n*(n-1). - Charlie Neder, Jun 21 2019
EXAMPLE
For n=1, the array is 2, and the sum is 2.
.
. 2 4
For n=2, the array is and the sum is 13.
. 4 3
.
. 2 4 7
For n=3, the array is 4 3 6 and the sum is 44.
7 6 5
PROG
(Excel, VBA)
Sub A308731()
n = 50
Cells(1, 1) = 2
p = 0
For i = 2 To n^2
isPrime = True
For j = 1 To p - 1
If i Mod Cells(j, j) = 0 Then
isPrime = False
Exit For
End If
Next j
If isPrime then
p = p + 1
Cells(p, p) = i
If p >= n Then
Exit For
End If
End If
Next i
For i = 2 To p
For j = 1 To i - 1
Cells(i, j) = Cells(i, i) + i - j
Cells(j, i) = Cells(i, j)
Next j
Next i
For i = 1 To n
Sum = 0
For k = 1 To i
For j = 1 To i
Sum = Sum + Cells(k, j)
Cells(i, n + 1) = Sum
Next j
Next k
Next i
End Sub
(PARI) M(i, j) = if (i>=j, prime(i)+i-j, M(j, i));
a(n) = sum(i=1, n, vecsum(vector(n, k, M(i, k)))); \\ Michel Marcus, Jun 21 2019
CROSSREFS
Cf. A000040.
Sequence in context: A102296 A296807 A366310 * A025194 A084156 A002534
KEYWORD
nonn
AUTHOR
Ali Sada, Jun 20 2019
EXTENSIONS
Edited by Michel Marcus, Jun 21 2019
STATUS
approved