login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Binomial transform of sinh(x)*cosh(sqrt(3)*x).
3

%I #21 Oct 10 2022 15:28:19

%S 0,1,2,13,44,181,662,2521,9368,35113,130922,489061,1824836,6811741,

%T 25420670,94875313,354076208,1321442641,4931681234,18405321661,

%U 68689566044,256353060613,956722558310,3570537526921,13325427195080,49731172316281,185599261007162

%N Binomial transform of sinh(x)*cosh(sqrt(3)*x).

%H Vincenzo Librandi, <a href="/A084156/b084156.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,2,-12,3).

%F a(n) = 4*a(n-1) + 2*a(n-2) - 12*a(n-3) + 3*a(n-4).

%F a(n) = ((2+sqrt(3))^n + (2-sqrt(3))^n - (sqrt(3))^n - (-sqrt(3))^n)/4.

%F G.f.: x*(1-2*x+3*x^2)/((1-3*x^2)(1-4*x+x^2)).

%F E.g.f. : exp(x)*sinh(x)*cosh(sqrt(3)*x).

%F a(n) = (2*ChebyshevT(n, 2) - (1+(-1)^n)*3^(n/2))/4 = (A001075(n) - A254006(n))/2. - _G. C. Greubel_, Oct 10 2022

%p seq((2*simplify(ChebyshevT(n,2)) - (1+(-1)^n)*3^(n/2))/4, n = 0..30); # _G. C. Greubel_, Oct 10 2022

%t LinearRecurrence[{4,2,-12,3},{0,1,2,13},30] (* _Harvey P. Dale_, Feb 01 2014 *)

%o (Magma) I:=[0,1,2,13]; [n le 4 select I[n] else 4*Self(n-1)+2*Self(n-2)-12*Self(n-3)+3*Self(n-4): n in [1..30]]; // _Vincenzo Librandi_, Feb 13 2014

%o (SageMath)

%o def A084156(n): return (chebyshev_T(n, 2) - ((n+1)%2)*3^(n/2))/2

%o [A084156(n) for n in range(31)] # _G. C. Greubel_, Oct 10 2022

%Y Cf. A001075, A084154, A084157, A254006.

%K nonn,easy

%O 0,3

%A _Paul Barry_, May 16 2003