Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Oct 13 2022 13:02:51
%S 0,1,4,22,112,556,2704,13000,62080,295312,1401664,6644320,31472896,
%T 149017792,705395968,3338614912,15800258560,74772443392,353840161792,
%U 1674425579008,7923565146112,37494981225472,177428889407488
%N a(n) = 8*a(n-1) - 16*a(n-2) + 12*a(n-4) with a(0)=0, a(1)=1, a(2)=4, a(3)=22.
%C Binomial transform of A084156.
%H G. C. Greubel, <a href="/A084157/b084157.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (8,-16,0,12).
%F a(n) = (A083881(n) - A026150(n))/2.
%F a(n) = 8*a(n-1) - 16*a(n-2) + 12*a(n-4).
%F a(n) = ((3+sqrt(3))^n + (3-sqrt(3))^n - (1+sqrt(3))^n - (1-sqrt(3))^n)/4.
%F G.f.: x*(1-4*x+6*x^2)/((1-2*x-2*x^2)*(1-6*x+6*x^2)).
%F E.g.f.: exp(2*x)*sinh(x)*cosh(sqrt(3)*x).
%F From _G. C. Greubel_, Oct 11 2022: (Start)
%F a(2*n) = A003462(n)*A026150(2*n) = A003462(n)*A080040(2*n)/2.
%F a(2*n+1) = (1/2)*(3^(n+1)*A002605(2*n+1) - A026150(2*n+1)). (End)
%t LinearRecurrence[{8,-16,0,12},{0,1,4,22},30] (* _Harvey P. Dale_, Feb 19 2017 *)
%o (Magma) I:=[0,1,4,22]; [n le 4 select I[n] else 8*Self(n-1) -16*Self(n-2) +12*Self(n-4): n in [1..41]]; // _G. C. Greubel_, Oct 11 2022
%o (SageMath)
%o A083881 = BinaryRecurrenceSequence(6,-6,1,3)
%o A026150 = BinaryRecurrenceSequence(2,2,1,1)
%o def A084157(n): return (A083881(n) - A026150(n))/2
%o [A084157(n) for n in range(41)] # _G. C. Greubel_, Oct 11 2022
%Y Cf. A026150, A083881, A084155, A084156.
%Y Cf. A002605, A003462, A080040.
%K easy,nonn
%O 0,3
%A _Paul Barry_, May 16 2003