The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A357572 Expansion of e.g.f. sinh(sqrt(3) * (exp(x)-1)) / sqrt(3). 7
 0, 1, 1, 4, 19, 85, 406, 2191, 13105, 84190, 573121, 4127521, 31434184, 252388957, 2126998693, 18740283556, 172134162631, 1644920020417, 16324076578870, 167938152551491, 1787952325142341, 19667748794844550, 223217829954224029, 2610546296216999197 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS Seiichi Manyama, Table of n, a(n) for n = 0..562 Eric Weisstein's World of Mathematics, Bell Polynomial. FORMULA a(n) = Sum_{k=0..floor((n-1)/2)} 3^k * Stirling2(n,2*k+1). a(n) = ( Bell_n(sqrt(3)) - Bell_n(-sqrt(3)) )/(2 * sqrt(3)), where Bell_n(x) is n-th Bell polynomial. a(n) = 0; a(n) = Sum_{k=0..n-1} binomial(n-1, k) * A357615(k). PROG (PARI) a(n) = sum(k=0, (n-1)\2, 3^k*stirling(n, 2*k+1, 2)); (PARI) Bell_poly(n, x) = exp(-x)*suminf(k=0, k^n*x^k/k!); a(n) = round((Bell_poly(n, sqrt(3))-Bell_poly(n, -sqrt(3)))/(2*sqrt(3))); CROSSREFS Cf. A024429, A264037, A357598. Cf. A027710, A357615, A357737. Sequence in context: A017962 A260746 A290667 * A291416 A192526 A084155 Adjacent sequences: A357569 A357570 A357571 * A357573 A357574 A357575 KEYWORD nonn AUTHOR Seiichi Manyama, Oct 05 2022 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 15:24 EDT 2024. Contains 372664 sequences. (Running on oeis4.)