The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264037 Stirling transform of A077957 (aerated powers of 2) with 0 prepended [0, 1, 0, 2, 0, 4, 0, 8, ...]. 8
 0, 1, 1, 3, 13, 55, 241, 1171, 6357, 37567, 236521, 1574331, 11068333, 82110535, 640794337, 5239439011, 44723250501, 397481121295, 3671081354137, 35176098791115, 349120380267421, 3583273413146647, 37975511840454673, 415004245048757299, 4670891190907818165 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(n) without the leading zero [1, 1, 3, 13, 55, ...] is the binomial transform of A264036. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..567 Eric Weisstein's MathWorld, Bell Polynomial. FORMULA a(n) = Sum_{k=0..floor(n/2)} 2^k*Stirling2(n,2*k+1). a(n) = (Bell_n(sqrt(2)) - Bell_n(-sqrt(2)))/(2*sqrt(2)), where Bell_n(x) is n-th Bell polynomial. Bell_n(sqrt(2)) = A264036(n) + a(n)*sqrt(2). E.g.f.: sinh(sqrt(2)*(exp(x) - 1))/sqrt(2). a(n) = 0; a(n) = Sum_{k=0..n-1} binomial(n-1, k) * A264036(k). - Seiichi Manyama, Oct 12 2022 EXAMPLE G.f. = x + x^2 + 3*x^3 + 13*x^4 + 55*x^5 + 241*x^7 + 1171*x^8 + 6357*x^9 + ... MATHEMATICA Table[(BellB[n, Sqrt[2]] - BellB[n, -Sqrt[2]])/(2 Sqrt[2]), {n, 0, 24}] PROG (PARI) vector(100, n, n--; sum(k=0, n\2, 2^k*stirling(n, 2*k+1, 2))) \\ Altug Alkan, Nov 01 2015 CROSSREFS Cf. A077957, A264036. Cf. A024429, A357572, A357598. Sequence in context: A291653 A183804 A117376 * A151318 A151212 A151213 Adjacent sequences: A264034 A264035 A264036 * A264038 A264039 A264040 KEYWORD nonn AUTHOR Vladimir Reshetnikov, Nov 01 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 18 15:24 EDT 2024. Contains 372664 sequences. (Running on oeis4.)