login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A264038 Convolution of Lucas and Jacobsthal numbers. 1
0, 2, 3, 10, 20, 47, 98, 210, 435, 902, 1848, 3775, 7670, 15542, 31403, 63330, 127500, 256367, 514938, 1033450, 2072675, 4154702, 8324528, 16673535, 33386670, 66837422, 133778523, 267724810, 535721060, 1071881327, 2144473298, 4290096450, 8582053395, 17167117142, 34339105128, 68686091455, 137384934950, 274790503142, 549614391563, 1099282801650 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The main theorem of the Griffith-Bramham paper found in the LINKS section is the equivalence of the following alternate definitions for a(n). (I) a(n) equals the convolution of the Lucas numbers (A000032) and the Jacobsthal numbers (A001045), where, as usual, the m-th term of the convolution of sequences {b(n)}_{n>=0} and {c(n)}_{n>-0} equals Sum_{t+s=m} b(t)* c(s). (II) a(n) = A014551(n+1)-A000032(n+1), the difference of the Lucas-Jacobsthal numbers and the Lucas numbers with a shift of 1. The authors prove the equivalence of (I) and (II) using the generating function method.
Referring to the simplicity of definition (II), the authors formulate the following open question: "Since the convolution takes such a simple form, we ask whether it is possible to obtain a purely combinatorial proof of this result."
I would suggest another open question: Are there convolutions of other linear homogeneous recurrences with constant coefficients which are equivalent to very simple forms?
LINKS
Martin Griffiths and Alex Bramham, The Jacobsthal Numbers: Two Results and Two Questions, Fibonacci Quarterly, Vol. 53, No. 2, May 2015, pp. 147-151.
Tamás Szakács, Convolution of second order linear recursive sequences I., Annales Mathematicae et Informaticae 46 (2016) pp. 205-216.
FORMULA
a(n) = A014551(n+1)- A000032(n+1).
G.f.: 2/(1-2x)-1/(1+x)-alpha/(1-alpha*x)-beta/(1-beta*x) with alpha=(1+sqrt(5))/2 and beta=-1/alpha.
From Colin Barker, Nov 02 2015: (Start)
a(n) = 2*a(n-1)+2*a(n-2)-3*a(n-3)-2*a(n-4) for n > 3.
G.f.: 2/(1-2x)-1/(1+x)-alpha/(1-alpha*x)-beta/(1-beta*x)=-x*(x-2) / ((x+1)*(2*x-1)*(x^2+x-1)), with alpha = (sqrt(5)+1)/2, and beta=-1/alpha.(End)
EXAMPLE
Let L(n)=A000032(n), j(n)=A014551(n), and J(n)=A001045(n). Then using the convolution definition (I), a(3)=10 because a(3) = L(0)J(3) + L(1)J(2) + L(2)J(1) + L(3)J(0) = 2*3 + 1*1 + 3*1 + 4*0 = 10; similarly, using definition (II) we have a(3) = j(4) - L(4) = 17 - 7 = 10.
MATHEMATICA
LinearRecurrence[{1, 2}, {1, 5}, 40]-LinearRecurrence[{1, 1}, {1, 3}, 40]
LinearRecurrence[{2, 2, -3, -2}, {0, 2, 3, 10}, 50] (* Harvey P. Dale, Dec 11 2016 *)
PROG
(PARI)
/* Prints first 40 terms of sequence a(n) */
Lucas(n)={if(n==0, 2, if(n==1, 1, Lucas(n-1)+Lucas(n-2))); }
j(n)={if(n==0, 2, if(n==1, 1, j(n-1)+2*j(n-2))); } /*Lucas-Jacobsthal*/
a(n)=j(n+1)-Lucas(n+1);
for(n=0, 40, print(a(n)));
(PARI) concat(0, Vec(-x*(x-2)/((x+1)*(2*x-1)*(x^2+x-1)) + O(x^100))) \\ Colin Barker, Nov 02 2015
CROSSREFS
Equals convolution of Lucas numbers (A000032) and Jacobsthal numbers (A001045); also equals difference of Lucas-Jacobsthal numbers (A014551) minus Lucas numbers (A000032) with a shift of 1.
Sequence in context: A184261 A095919 A285981 * A148044 A148045 A148046
KEYWORD
nonn,easy
AUTHOR
Russell Jay Hendel, Nov 01 2015
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 00:30 EDT 2024. Contains 371917 sequences. (Running on oeis4.)