The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A264036 Stirling transform of A077957 (aerated powers of 2). 8
 1, 0, 2, 6, 18, 70, 330, 1694, 9202, 53334, 332090, 2212782, 15638370, 116365990, 907975146, 7413080510, 63212284498, 561747543414, 5190343710746, 49752410984526, 493844719701186, 5068209425457862, 53705511911500746, 586862875255860062, 6605213319604075186 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS a(n) is the inverse binomial transform of A264037 without the leading zero [1, 1, 3, 13, 55, ...]. LINKS Seiichi Manyama, Table of n, a(n) for n = 0..567 Eric Weisstein's MathWorld, Bell Polynomial. FORMULA a(n) = Sum_{k=0..n} A077957(k)*Stirling2(n,k). a(n) = Sum_{k=0..floor(n/2)} 2^k*Stirling2(n,2*k). a(n) = (Bell_n(sqrt(2)) + Bell_n(-sqrt(2)))/2, where Bell_n(x) is n-th Bell polynomial. Bell_n(sqrt(2)) = a(n) + A264037(n)*sqrt(2). E.g.f.: cosh(sqrt(2)*(exp(x) - 1)). a(n) = 1; a(n) = 2 * Sum_{k=0..n-1} binomial(n-1, k) * A264037(k). - Seiichi Manyama, Oct 12 2022 EXAMPLE G.f. = 1 + 2*x^2 + 6*x^3 + 18*x^4 + 70*x^5 + 330*x^6 + 1694*x^7 + 9202*x^8 + ... MATHEMATICA Table[(BellB[n, Sqrt[2]] + BellB[n, -Sqrt[2]])/2, {n, 0, 24}] PROG (PARI) vector(100, n, n--; sum(k=0, n\2, 2^k*stirling(n, 2*k, 2))) \\ Altug Alkan, Nov 01 2015 CROSSREFS Column k=2 of A357681. Cf. A065143, A077957, A264037. Sequence in context: A177470 A060181 A131281 * A261994 A177472 A364849 Adjacent sequences: A264033 A264034 A264035 * A264037 A264038 A264039 KEYWORD nonn AUTHOR Vladimir Reshetnikov, Nov 01 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 10:09 EDT 2024. Contains 372786 sequences. (Running on oeis4.)