login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A264033
Triangle read by rows: T(n,k) (n>=0, 0<=k<=A130519(n+1)) is the number of integer partitions of n having k pairs of different size.
2
1, 1, 2, 2, 1, 3, 1, 1, 2, 2, 2, 1, 4, 2, 1, 2, 2, 2, 3, 3, 3, 1, 2, 1, 4, 3, 3, 3, 2, 3, 2, 1, 1, 3, 4, 3, 5, 2, 5, 2, 2, 1, 2, 1, 4, 4, 4, 7, 3, 4, 2, 4, 5, 1, 0, 2, 2, 2, 5, 5, 8, 2, 9, 4, 4, 3, 4, 1, 4, 1, 1, 2, 1, 6, 5, 4, 9, 4, 9, 4, 6, 5, 7, 2, 4, 3, 1, 2, 2, 2, 1, 1
OFFSET
0,3
COMMENTS
Row sums give A000041.
T(n,0) gives A000005(n) for n>0. - Alois P. Heinz, Nov 01 2015
REFERENCES
Richard Stanley, Enumerative combinatorics. Vol. 2 MathSciNet:1676282, page 375.
FORMULA
Sum_{k>0} k * T(n,k) = A271370(n). - Alois P. Heinz, Apr 05 2016
EXAMPLE
Triangle begins:
1;
1;
2;
2,1;
3,1,1;
2,2,2,1;
4,2,1,2,2;
2,3,3,3,1,2,1;
4,3,3,3,2,3,2,1,1;
3,4,3,5,2,5,2,2,1,2,1;
4,4,4,7,3,4,2,4,5,1,0,2,2;
2,5,5,8,2,9,4,4,3,4,1,4,1,1,2,1;
6,5,4,9,4,9,4,6,5,7,2,4,3,1,2,2,2,1,1;
...
MAPLE
b:= proc(n, i, p, t) option remember; expand(
`if`(n=0, x^t, `if`(i<1, 0, add(
b(n-i*j, i-1, p+j, t+j*p), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0$2)):
seq(T(n), n=0..15); # Alois P. Heinz, Nov 01 2015
MATHEMATICA
b[n_, i_, p_, t_] := b[n, i, p, t] = Expand[If[n==0, x^t, If[i<1, 0, Sum[b[n-i*j, i-1, p+j, t+j*p], {j, 0, n/i}]]]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 03 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Christian Stump, Nov 01 2015
STATUS
approved