Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Feb 03 2017 09:51:54
%S 1,1,2,2,1,3,1,1,2,2,2,1,4,2,1,2,2,2,3,3,3,1,2,1,4,3,3,3,2,3,2,1,1,3,
%T 4,3,5,2,5,2,2,1,2,1,4,4,4,7,3,4,2,4,5,1,0,2,2,2,5,5,8,2,9,4,4,3,4,1,
%U 4,1,1,2,1,6,5,4,9,4,9,4,6,5,7,2,4,3,1,2,2,2,1,1
%N Triangle read by rows: T(n,k) (n>=0, 0<=k<=A130519(n+1)) is the number of integer partitions of n having k pairs of different size.
%C Row sums give A000041.
%C T(n,0) gives A000005(n) for n>0. - _Alois P. Heinz_, Nov 01 2015
%D Richard Stanley, Enumerative combinatorics. Vol. 2 MathSciNet:1676282, page 375.
%H Alois P. Heinz, <a href="/A264033/b264033.txt">Rows n = 0..80, flattened</a>
%H FindStat - Combinatorial Statistic Finder, <a href="http://www.findstat.org/StatisticsDatabase/St000175">Degree of the polynomial counting the number of semistandard Young-tableaux of shape k*lambda</a>.
%F Sum_{k>0} k * T(n,k) = A271370(n). - _Alois P. Heinz_, Apr 05 2016
%e Triangle begins:
%e 1;
%e 1;
%e 2;
%e 2,1;
%e 3,1,1;
%e 2,2,2,1;
%e 4,2,1,2,2;
%e 2,3,3,3,1,2,1;
%e 4,3,3,3,2,3,2,1,1;
%e 3,4,3,5,2,5,2,2,1,2,1;
%e 4,4,4,7,3,4,2,4,5,1,0,2,2;
%e 2,5,5,8,2,9,4,4,3,4,1,4,1,1,2,1;
%e 6,5,4,9,4,9,4,6,5,7,2,4,3,1,2,2,2,1,1;
%e ...
%p b:= proc(n, i, p, t) option remember; expand(
%p `if`(n=0, x^t, `if`(i<1, 0, add(
%p b(n-i*j, i-1, p+j, t+j*p), j=0..n/i))))
%p end:
%p T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n$2, 0$2)):
%p seq(T(n), n=0..15); # _Alois P. Heinz_, Nov 01 2015
%t b[n_, i_, p_, t_] := b[n, i, p, t] = Expand[If[n==0, x^t, If[i<1, 0, Sum[b[n-i*j, i-1, p+j, t+j*p], {j, 0, n/i}]]]]; T[n_] := Function [p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, n, 0, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* _Jean-François Alcover_, Feb 03 2017, after _Alois P. Heinz_ *)
%Y Cf. A000005, A000041, A130519, A271370.
%K nonn,tabf
%O 0,3
%A _Christian Stump_, Nov 01 2015