login
A260746
Number of prime juggling patterns of period n using 4 balls.
3
1, 4, 19, 83, 391, 1663, 7739, 33812, 153575, 677901, 3075879, 13586581, 61458267, 272367077, 1228519987, 5456053443, 24547516939, 109153816505, 490067180301, 2180061001275, 9772927018285, 43467641569472
OFFSET
1,2
COMMENTS
A juggling pattern is prime if the closed walk corresponding to the pattern in the juggling state graph is a cycle.
LINKS
Esther Banaian, Steve Butler, Christopher Cox, Jeffrey Davis, Jacob Landgraf and Scarlitte Ponce, Counting prime juggling patterns, arXiv:1508.05296 [math.CO], 2015.
Jack Boyce, jprime program, 2024.
Fan Chung and R. L. Graham, Primitive juggling sequences, American Mathematical Monthly 115 (2008), 185-194.
EXAMPLE
In siteswap notation, the prime juggling pattern(s) of length one is 4; of length two are 53, 62, 71 and 80; of length three are (11)01, (12)00, 660, 750, (10)11, (10)20, 390, 831, 822, 471, 561, 741, 723, 633, 642, 552, 912, 930 and 480.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Jacob Landgraf, Jul 30 2015
EXTENSIONS
a(14) from Roman Berens, Mar 20 2021
a(15)-a(22) from Jack Boyce, May 31 2024
STATUS
approved