OFFSET
0,2
COMMENTS
Third binomial transform of A077957. Inverse binomial transform of A083879. - Philippe Deléham, Dec 01 2008
LINKS
FORMULA
a(n) = ((3 - sqrt(2))^n + (3 + sqrt(2))^n)/2;
a(n) = Sum_{k=0..n} C(n, 2k)*3^(n-2k)*2^k;
G.f.: (1-3x)/(1-6x+7x^2);
E.g.f.: exp(3x)*cosh(x*sqrt(2)).
a(n) = Sum_{k=0..n} C(n, k)*2^((n-k)/2)(1+(-1)^(n-k))*3^k/2. - Paul Barry, Jan 22 2005
a(n) = Sum_{k=0..n} A098158(n,k)*3^(2k-n)*2^(n-k). - Philippe Deléham, Dec 01 2008
MATHEMATICA
f[n_] := Simplify[(3 + Sqrt@2)^n + (3 - Sqrt@2)^n]/2; Array[f, 23, 0] (* Robert G. Wilson v, Oct 31 2010 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Paul Barry, May 08 2003
STATUS
approved