login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A083877
Absolute value of determinant of n X n matrix where the element a(i,j) = if i + j > n then 2*(i + j -n) - 1, else 2*(n + 1 - i - j).
1
1, 5, 25, 101, 385, 1397, 4921, 16949, 57409, 191909, 634777, 2081477, 6775873, 21921941, 70548793, 225995285, 721032577, 2292237893, 7264134169, 22954663973, 72350776321, 227512682165, 713919106105, 2235900497141, 6990131027905, 21817681693157
OFFSET
1,2
COMMENTS
The main antidiagonal is 1, the upper left elements are increasing larger even numbers and the lower right elements are increasing larger odd numbers.
FORMULA
a(n) = 1/12 * [(4n-1)3^n - 3(-1)^n].
a(n) = 5*a(n-1)-3*a(n-2)-9*a(n-3). G.f.: x*(3*x^2+1) / ((x+1)*(3*x-1)^2). - Colin Barker, Sep 28 2014
EXAMPLE
a(5) = det{ 8 6 4 2 1 / 6 4 2 1 3 / 4 2 1 3 5 / 2 1 3 5 7 / 1 3 5 7 9 } = 385.
MATHEMATICA
f[i_, j_, n_] := Block[{a = 2*(i + j) - 2*n - 1}, If[i + j <= n, a = Abs[a - 1]]; a]; Table[ Abs[ Det[ Table[ f[i, j, n], {i, 1, n}, {j, 1, n}]]], {n, 1, 24}]
LinearRecurrence[{5, -3, -9}, {1, 5, 25}, 30] (* Harvey P. Dale, Jan 06 2017 *)
PROG
(PARI) Vec(x*(3*x^2+1)/((x+1)*(3*x-1)^2) + O(x^100)) \\ Colin Barker, Sep 28 2014
(PARI) a(n) = abs(matdet(matrix (n, n, i, j, if (i + j > n, 2*(i + j -n) - 1, 2*(n + 1 - i - j))))); \\ Michel Marcus, Sep 29 2014
CROSSREFS
Sequence in context: A098111 A224415 A255459 * A293885 A209836 A272762
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, May 07 2003
EXTENSIONS
More terms from Colin Barker, Sep 28 2014
Definition corrected by Michel Marcus, Oct 01 2014
STATUS
approved