OFFSET
1,2
COMMENTS
The main antidiagonal is 1, the upper left elements are increasing larger even numbers and the lower right elements are increasing larger odd numbers.
LINKS
Harvey P. Dale, Table of n, a(n) for n = 1..1000
Index entries for linear recurrences with constant coefficients, signature (5,-3,-9).
FORMULA
a(n) = 1/12 * [(4n-1)3^n - 3(-1)^n].
a(n) = 5*a(n-1)-3*a(n-2)-9*a(n-3). G.f.: x*(3*x^2+1) / ((x+1)*(3*x-1)^2). - Colin Barker, Sep 28 2014
EXAMPLE
a(5) = det{ 8 6 4 2 1 / 6 4 2 1 3 / 4 2 1 3 5 / 2 1 3 5 7 / 1 3 5 7 9 } = 385.
MATHEMATICA
f[i_, j_, n_] := Block[{a = 2*(i + j) - 2*n - 1}, If[i + j <= n, a = Abs[a - 1]]; a]; Table[ Abs[ Det[ Table[ f[i, j, n], {i, 1, n}, {j, 1, n}]]], {n, 1, 24}]
LinearRecurrence[{5, -3, -9}, {1, 5, 25}, 30] (* Harvey P. Dale, Jan 06 2017 *)
PROG
(PARI) Vec(x*(3*x^2+1)/((x+1)*(3*x-1)^2) + O(x^100)) \\ Colin Barker, Sep 28 2014
(PARI) a(n) = abs(matdet(matrix (n, n, i, j, if (i + j > n, 2*(i + j -n) - 1, 2*(n + 1 - i - j))))); \\ Michel Marcus, Sep 29 2014
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, May 07 2003
EXTENSIONS
More terms from Colin Barker, Sep 28 2014
Definition corrected by Michel Marcus, Oct 01 2014
STATUS
approved