login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A272762
Number of active (ON, black) cells at stage 2^n-1 of the two-dimensional cellular automaton defined by "Rule 822", based on the 5-celled von Neumann neighborhood.
0
1, 5, 25, 105, 417, 1657, 6689, 27353, 112513, 462969, 1899873, 7766041, 31617089, 128250041, 518623777, 2091988569
OFFSET
0,2
COMMENTS
Initialized with a single black (ON) cell at stage zero.
Conjecture: Rule 886 also generates this sequence. - Lars Blomberg, Jul 22 2016
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
FORMULA
From Chai Wah Wu, Apr 28 2017: (Start)
a(n) = 12*a(n-1) - 55*a(n-2) + 120*a(n-3) - 124*a(n-4) + 48*a(n-5) for n > 4 (conjectured).
G.f.: (-56*x^4 + 40*x^3 - 20*x^2 + 7*x - 1)/((x - 1)*(2*x - 1)^2*(3*x - 1)*(4*x - 1)) (conjectured). (End)
a(n) = 5 - 2^(1+n) + 2^(1+2*n) - 4*3^n + 2^(2+n)*n (conjectured). - Colin Barker, Apr 28 2017
MATHEMATICA
CAStep[rule_, a_]:=Map[rule[[10-#]]&, ListConvolve[{{0, 2, 0}, {2, 1, 2}, {0, 2, 0}}, a, 2], {2}];
code=822; stages=128;
rule=IntegerDigits[code, 2, 10];
g=2*stages+1; (* Maximum size of grid *)
a=PadLeft[{{1}}, {g, g}, 0, Floor[{g, g}/2]]; (* Initial ON cell on grid *)
ca=a;
ca=Table[ca=CAStep[rule, ca], {n, 1, stages+1}];
PrependTo[ca, a];
(* Trim full grid to reflect growth by one cell at each stage *)
k=(Length[ca[[1]]]+1)/2;
ca=Table[Table[Part[ca[[n]][[j]], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n, 1, k}];
on=Map[Function[Apply[Plus, Flatten[#1]]], ca] (* Count ON cells at each stage *)
Part[on, 2^Range[0, Log[2, stages]]] (* Extract relevant terms *)
CROSSREFS
Cf. A269918.
Sequence in context: A083877 A293885 A209836 * A245551 A146882 A218264
KEYWORD
nonn,more
AUTHOR
Robert Price, May 27 2016
EXTENSIONS
a(8)-a(15) from Lars Blomberg, Jul 22 2016
STATUS
approved