login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255459 a(n) = A255458(2^n-1). 2
1, 5, 25, 101, 361, 1205, 3865, 12101, 37321, 114005, 346105, 1046501, 3155881, 9500405, 28566745, 85831301, 257756041, 773792405, 2322425785, 6969374501, 20912317801, 62745342005, 188252803225, 564791964101, 1694443001161, 5083463221205, 15250658099065 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Shalosh B. Ekhad, N. J. A. Sloane, and  Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.

Shalosh B. Ekhad, N. J. A. Sloane, and  Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.

N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2

N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.

Index entries for sequences related to cellular automata

Index entries for linear recurrences with constant coefficients, signature (6,-11,6).

FORMULA

G.f.: (1-x+6*x^2) / ((1-x)*(1-2*x)*(1-3*x)).

From Colin Barker, Feb 03 2017: (Start)

a(n) = (3 - 2^(3+n) + 2*3^(1+n)).

a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>2.

(End)

PROG

(PARI) Vec((1-x+6*x^2) / ((1-x)*(1-2*x)*(1-3*x)) + O(x^30)) \\ Colin Barker, Feb 03 2017

CROSSREFS

Cf. A255458.

Sequence in context: A022729 A098111 A224415 * A083877 A293885 A209836

Adjacent sequences:  A255456 A255457 A255458 * A255460 A255461 A255462

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane and Doron Zeilberger, Feb 23 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 16 00:50 EDT 2018. Contains 316252 sequences. (Running on oeis4.)