login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255459
a(n) = A255458(2^n-1).
3
1, 5, 25, 101, 361, 1205, 3865, 12101, 37321, 114005, 346105, 1046501, 3155881, 9500405, 28566745, 85831301, 257756041, 773792405, 2322425785, 6969374501, 20912317801, 62745342005, 188252803225, 564791964101, 1694443001161, 5083463221205, 15250658099065
OFFSET
0,2
LINKS
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796 [math.CO], 2015; see also the Accompanying Maple Package.
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249 [math.CO], 2015.
N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
FORMULA
G.f.: (1-x+6*x^2) / ((1-x)*(1-2*x)*(1-3*x)).
From Colin Barker, Feb 03 2017: (Start)
a(n) = (3 - 2^(3+n) + 2*3^(1+n)).
a(n) = 6*a(n-1) - 11*a(n-2) + 6*a(n-3) for n>2.
(End)
MATHEMATICA
LinearRecurrence[{6, -11, 6}, {1, 5, 25}, 30] (* Jean-François Alcover, Jan 09 2019 *)
PROG
(PARI) Vec((1-x+6*x^2) / ((1-x)*(1-2*x)*(1-3*x)) + O(x^30)) \\ Colin Barker, Feb 03 2017
CROSSREFS
Cf. A255458.
Sequence in context: A022729 A098111 A224415 * A083877 A293885 A209836
KEYWORD
nonn,easy
AUTHOR
STATUS
approved