login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255461
A255460(2^n-1).
1
1, 6, 22, 82, 306, 1142, 4250, 15806, 58730, 218142, 810074, 3007886, 11167914, 41463774, 153942330, 571535534, 2121906442, 7877856190, 29247532442, 108585059214, 403135208426, 1496688037406, 5556634000122, 20629669372526, 76590116106186, 284349965403518, 1055683240842074, 3919350217589838, 14551056119534250, 54022534883643358
OFFSET
0,2
LINKS
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, A Meta-Algorithm for Creating Fast Algorithms for Counting ON Cells in Odd-Rule Cellular Automata, arXiv:1503.01796, 2015; see also the Accompanying Maple Package.
Shalosh B. Ekhad, N. J. A. Sloane, and Doron Zeilberger, Odd-Rule Cellular Automata on the Square Grid, arXiv:1503.04249, 2015.
N. J. A. Sloane, On the No. of ON Cells in Cellular Automata, Video of talk in Doron Zeilberger's Experimental Math Seminar at Rutgers University, Feb. 05 2015: Part 1, Part 2
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168, 2015
FORMULA
G.f.: (1-x)*(1+2*x-3*x^2-6*x^3-2*x^4+4*x^5)/((1+x)*(1-2*x)*(1-4*x+x^2+2*x^4-4*x^5)).
CROSSREFS
Cf. A255460.
Sequence in context: A200052 A051945 A253070 * A003699 A378937 A047124
KEYWORD
nonn
AUTHOR
STATUS
approved