login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Binomial transform of sinh(x)*cosh(sqrt(2)*x).
3

%I #18 Sep 08 2022 08:45:10

%S 0,1,2,10,32,116,392,1352,4608,15760,53792,183712,627200,2141504,

%T 7311488,24963200,85229568,290992384,993509888,3392055808,11581202432,

%U 39540700160,135000393728,460920178688,1573679923200,5372879343616

%N Binomial transform of sinh(x)*cosh(sqrt(2)*x).

%H G. C. Greubel, <a href="/A084154/b084154.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,0,-8,4).

%F a(n) = 4*a(n-1) - 8*a(n-3) + 4*a(n-4), a(0)=0, a(1)=1, a(2)=2, a(3)=10.

%F a(n) = ((2+sqrt(2))^n + (2-sqrt(2))^n - sqrt(2)^n - (-sqrt(2))^n)/4.

%F G.f.: x*(1-2*x+2*x^2)/((1-2*x^2)*(1-4*x+2*x^2)).

%F E.g.f.: exp(x)*sinh(x)*cosh(sqrt(2)*x).

%t With[{nn=30},CoefficientList[Series[Exp[x]Sinh[x]Cosh[Sqrt[2]x],{x,0, nn}], x] Range[0,nn]!] (* or *) LinearRecurrence[{4,0,-8,4},{0,1,2, 10}, 30] (* _Harvey P. Dale_, Jun 19 2016 *)

%o (PARI) x='x+O('x^30); concat([0], Vec(x*(1-2*x+2*x^2)/((1-2*x^2)*(1-4*x+2*x^2)))) \\ _G. C. Greubel_, Aug 16 2018

%o (Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1-2*x+2*x^2)/((1-2*x^2)*(1-4*x+2*x^2)))); // _G. C. Greubel_, Aug 16 2018

%Y Cf. A084155.

%K easy,nonn

%O 0,3

%A _Paul Barry_, May 16 2003