login
A336820
A(n,k) is the n-th number that is a sum of at most k positive k-th powers; square array A(n,k), n>=1, k>=1, read by antidiagonals.
12
0, 0, 1, 0, 1, 2, 0, 1, 2, 3, 0, 1, 2, 4, 4, 0, 1, 2, 3, 5, 5, 0, 1, 2, 3, 8, 8, 6, 0, 1, 2, 3, 4, 9, 9, 7, 0, 1, 2, 3, 4, 16, 10, 10, 8, 0, 1, 2, 3, 4, 5, 17, 16, 13, 9, 0, 1, 2, 3, 4, 5, 32, 18, 17, 16, 10, 0, 1, 2, 3, 4, 5, 6, 33, 19, 24, 17, 11, 0, 1, 2, 3, 4, 5, 6, 64, 34, 32, 27, 18, 12
OFFSET
1,6
LINKS
FORMULA
A(n,k) = n-1 for n <= k+1.
EXAMPLE
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, ...
3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 3, ...
4, 5, 8, 4, 4, 4, 4, 4, 4, 4, 4, ...
5, 8, 9, 16, 5, 5, 5, 5, 5, 5, 5, ...
6, 9, 10, 17, 32, 6, 6, 6, 6, 6, 6, ...
7, 10, 16, 18, 33, 64, 7, 7, 7, 7, 7, ...
8, 13, 17, 19, 34, 65, 128, 8, 8, 8, 8, ...
9, 16, 24, 32, 35, 66, 129, 256, 9, 9, 9, ...
10, 17, 27, 33, 36, 67, 130, 257, 512, 10, 10, ...
MAPLE
A:= proc() local l, w, A; l, w, A:= proc() [] end, proc() [] end,
proc(n, k) option remember; local b; b:=
proc(x, y) option remember; `if`(x<0 or y<1, {},
{0, b(x, y-1)[], map(t-> t+l(k)[y], b(x-1, y))[]})
end;
while nops(w(k)) < n do forget(b);
l(k):= [l(k)[], (nops(l(k))+1)^k];
w(k):= sort([select(h-> h<l(k)[-1], b(k, nops(l(k))))[]])
od; w(k)[n]
end; A
end():
seq(seq(A(n, 1+d-n), n=1..d), d=1..14);
MATHEMATICA
b[n_, k_, i_, t_] := b[n, k, i, t] = n == 0 || i > 0 && t > 0 && (b[n, k, i - 1, t] || i^k <= n && b[n - i^k, k, i, t - 1]);
A[n_, k_] := A[n, k] = Module[{m}, For[m = 1 + If[n == 1, -1, A[n - 1, k]], !b[m, k, m^(1/k) // Floor, k], m++]; m];
Table[A[n, 1+d-n], {d, 1, 14}, {n, 1, d}] // Flatten (* Jean-François Alcover, Dec 03 2020, using Alois P. Heinz's code for columns *)
CROSSREFS
A(n+j,n) for j=0-3 give: A001477(n-1), A000027, A000079, A000051.
Cf. A336725.
Sequence in context: A362327 A350168 A262881 * A099173 A293377 A159880
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 04 2020
STATUS
approved