login
A336725
A(n,k) is the n-th number that is a sum of k positive k-th powers; square array A(n,k), n>=1, k>=1, read by antidiagonals.
10
1, 2, 2, 3, 5, 3, 4, 10, 8, 4, 5, 19, 17, 10, 5, 6, 36, 34, 24, 13, 6, 7, 69, 67, 49, 29, 17, 7, 8, 134, 132, 98, 64, 36, 18, 8, 9, 263, 261, 195, 129, 84, 43, 20, 9, 10, 520, 518, 388, 258, 160, 99, 55, 25, 10, 11, 1033, 1031, 773, 515, 321, 247, 114, 62, 26, 11, 12, 2058, 2056, 1542, 1028, 642, 384, 278, 129, 66, 29, 12
OFFSET
1,2
LINKS
EXAMPLE
Square array A(n,k) begins:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
2, 5, 10, 19, 36, 69, 134, 263, 520, 1033, ...
3, 8, 17, 34, 67, 132, 261, 518, 1031, 2056, ...
4, 10, 24, 49, 98, 195, 388, 773, 1542, 3079, ...
5, 13, 29, 64, 129, 258, 515, 1028, 2053, 4102, ...
6, 17, 36, 84, 160, 321, 642, 1283, 2564, 5125, ...
7, 18, 43, 99, 247, 384, 769, 1538, 3075, 6148, ...
8, 20, 55, 114, 278, 734, 896, 1793, 3586, 7171, ...
9, 25, 62, 129, 309, 797, 2193, 2048, 4097, 8194, ...
10, 26, 66, 164, 340, 860, 2320, 6568, 4608, 9217, ...
MAPLE
A:= proc() local l, w, A; l, w, A:= proc() [] end, proc() [] end,
proc(n, k) option remember; local b; b:=
proc(x, y) option remember; `if`(x=0, {0}, `if`(y<1, {},
{b(x, y-1)[], map(t-> t+l(k)[y], b(x-1, y))[]}))
end;
while nops(w(k)) < n do forget(b);
l(k):= [l(k)[], (nops(l(k))+1)^k];
w(k):= sort([select(h-> h<l(k)[-1], b(k, nops(l(k))))[]])
od; w(k)[n]
end; A
end():
seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
MATHEMATICA
nmax = 12;
pow[n_, k_] := IntegerPartitions[n, {k}, Range[n^(1/k) // Ceiling]^k];
col[k_] := col[k] = Reap[Module[{j = k, n = 1, p}, While[n <= nmax, p = pow[j, k]; If[p =!= {}, Sow[j]; n++]; j++]]][[2, 1]];
A[n_, k_] := col[k][[n]];
Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Dec 03 2020 *)
CROSSREFS
Rows n=1-3 give: A000027, A052944, A145071.
Main diagonal gives A000337.
Cf. A336820.
Sequence in context: A210565 A125101 A208519 * A210232 A047666 A285935
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Aug 01 2020
STATUS
approved