login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285935
Square array a(n, m) read by antidiagonals whose g.f. is 1 / ((1-x)^2 * (1-y)^2 - x*y).
0
1, 2, 2, 3, 5, 3, 4, 10, 10, 4, 5, 18, 26, 18, 5, 6, 30, 58, 58, 30, 6, 7, 47, 116, 153, 116, 47, 7, 8, 70, 214, 354, 354, 214, 70, 8, 9, 100, 371, 746, 931, 746, 371, 100, 9, 10, 138, 612, 1464, 2204, 2204, 1464, 612, 138, 10, 11, 185, 969, 2714, 4816, 5794
OFFSET
0,2
FORMULA
G.f. Sum_{n>=0, m>=0} a(n, m) * x^n * y^m = 1 / ((1-x)^2 * (1-y)^2 - x*y).
T(n, k) := a(n-k, k) where 0 <= k <= n.
a(n, m) = a(m, n) = T(n+m, n), T(n, 0) = a(n, 0) = n+1, if n>=0, m>=0.
Row sums are (-1)^(n+1) * A113067(n+1).
T(n, 1) = A177787(n+1).
EXAMPLE
a(n,m) 0 1 2 3
----+--- --- --- ---
0 | 1 2 3 4
1 | 2 5 10 18
2 | 3 10 26 58
3 | 4 18 58 153
MATHEMATICA
a[n_, m_] := SeriesCoefficient[1/((1-x)^2*(1-y)^2-x*y), {x, 0, n}, {y, 0, m}];
Table[a[n-m, m], {n, 0, 10}, {m, 0, n}] // Flatten (* Jean-François Alcover, Jun 15 2017 *)
PROG
(PARI) {a(n, m) = if( n<0 || m<0, 0, polcoeff( polcoeff( -1/(x*y-sqr(1-x-y+x*y))*(1+x*O(x^n))*(1+y*O(y^k)), n), m))};
CROSSREFS
Sequence in context: A336725 A210232 A047666 * A209568 A227641 A295097
KEYWORD
nonn,tabl
AUTHOR
Michael Somos, Jun 14 2017
STATUS
approved