login
A227641
T(n,k)=Number of nXk 0,1 arrays indicating 2X2 subblocks of some larger (n+1)X(k+1) binary array having determinant equal to one, with rows and columns of the latter in nondecreasing lexicographic order
6
1, 2, 2, 3, 5, 3, 4, 11, 11, 4, 5, 23, 39, 23, 5, 6, 44, 127, 127, 44, 6, 7, 78, 377, 667, 377, 78, 7, 8, 130, 1014, 3202, 3202, 1014, 130, 8, 9, 206, 2518, 13740, 25241, 13740, 2518, 206, 9, 10, 313, 5844, 53575, 179234, 179234, 53575, 5844, 313, 10, 11, 459, 12790
OFFSET
1,2
COMMENTS
Table starts
.1...2.....3......4........5..........6............7.............8
.2...5....11.....23.......44.........78..........130...........206
.3..11....39....127......377.......1014.........2518..........5844
.4..23...127....667.....3202......13740........53575........192191
.5..44...377...3202....25241.....179234......1147095.......6679750
.6..78..1014..13740...179234....2139328.....23032705.....224466940
.7.130..2518..53575..1147095...23032705....420651813....6956310972
.8.206..5844.192191..6679750..224466940...6956310972..196026480660
.9.313.12790.640831.35730988.1995242628.104620117266.5023590617706
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = n
k=2: a(n) = (1/24)*n^4 - (1/12)*n^3 + (35/24)*n^2 - (29/12)*n + 4 for n>1
k=3: [polynomial of degree 9] for n>3
k=4: [polynomial of degree 19] for n>9
k=5: [polynomial of degree 39] for n>17
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..1....0..0..1..0....0..0..0..1....0..0..0..0....0..0..0..0
..0..0..0..0....0..1..0..1....0..0..0..0....0..0..0..1....0..0..0..1
..0..0..0..0....1..0..1..0....0..1..1..0....0..1..0..0....0..1..0..0
..0..1..0..0....0..0..0..0....0..0..0..0....0..0..0..0....1..0..1..0
CROSSREFS
Sequence in context: A047666 A285935 A209568 * A295097 A295551 A196696
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Jul 18 2013
STATUS
approved