login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227638
Number of n X 3 0,1 arrays indicating 2 X 2 subblocks of some larger (n+1) X 4 binary array having determinant equal to one, with rows and columns of the latter in nondecreasing lexicographic order.
1
3, 11, 39, 127, 377, 1014, 2518, 5844, 12790, 26582, 52769, 100547, 184661, 328068, 565582, 948764, 1552366, 2482688, 3888261, 5973327, 9014649, 13382250, 19564750, 28200044, 40112142, 56355074, 78264849, 107520547, 146215717, 196941352
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = (1/90720)*n^9 - (1/6720)*n^8 + (73/15120)*n^7 - (9/160)*n^6 + (2869/4320)*n^5 - (4367/960)*n^4 + (66841/2835)*n^3 - (41101/560)*n^2 + (17105/126)*n - 108 for n>3.
Conjectures from Colin Barker, Sep 09 2018: (Start)
G.f.: x*(3 - 19*x + 64*x^2 - 128*x^3 + 172*x^4 - 167*x^5 + 151*x^6 - 154*x^7 + 151*x^8 - 107*x^9 + 49*x^10 - 13*x^11 + 2*x^12) / (1 - x)^10.
a(n) = 10*a(n-1) - 45*a(n-2) + 120*a(n-3) - 210*a(n-4) + 252*a(n-5) - 210*a(n-6) + 120*a(n-7) - 45*a(n-8) + 10*a(n-9) - a(n-10) for n>13.
(End)
EXAMPLE
Some solutions for n=4:
..0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..1....0..0..1
..0..0..1....0..0..0....0..1..1....0..1..0....0..1..0....0..0..0....0..0..0
..0..1..0....1..0..0....1..0..0....0..0..1....0..0..0....0..0..1....1..0..1
..0..1..0....0..0..1....0..1..0....1..0..1....0..1..0....0..0..0....0..0..0
CROSSREFS
Column 3 of A227641.
Sequence in context: A112674 A064086 A089579 * A166336 A002783 A289834
KEYWORD
nonn
AUTHOR
R. H. Hardin, Jul 18 2013
STATUS
approved