login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289834
Number of perfect matchings on n edges which represent RNA secondary folding structures characterized by the Lyngso and Pedersen (L&P) family and the Cao and Chen (C&C) family.
0
1, 1, 3, 11, 39, 134, 456, 1557, 5364, 18674, 65680, 233182, 834796, 3010712, 10929245, 39904623, 146451871, 539972534, 1999185777, 7429623640, 27705320423, 103636336176, 388775988319, 1462261313876, 5513152229901, 20832701135628, 78884459229627
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{i=0..n-2} C_i*(Sum_{j=1..n-i} C_j - (n-i)) + C_n where C is A000108.
From Vaclav Kotesovec, Jul 13 2017: (Start)
D-finite recurrence (of order 3): (n+2)*(41*n^3 - 228*n^2 + 391*n - 180)*a(n) = 6*(41*n^4 - 187*n^3 + 192*n^2 + 120*n - 160)*a(n-1) - 3*(3*n - 4)*(41*n^3 - 146*n^2 + 83*n + 70)*a(n-2) + 2*(2*n - 5)*(41*n^3 - 105*n^2 + 58*n + 24)*a(n-3).
a(n) ~ 41 * 4^n / (9*sqrt(Pi)*n^(3/2)).
(End)
MAPLE
a:= proc(n) option remember; `if`(n<4, [1$2, 3, 11][n+1],
(2*(74*n^2-69*n-110)*a(n-1)-3*(89*n^2-139*n-70)*a(n-2)+
2*(91*n^2-204*n-52)*a(n-3)-4*(5*n+1)*(2*n-7)*a(n-4))
/((n+2)*(23*n-43)))
end:
seq(a(n), n=0..40); # Alois P. Heinz, Jul 13 2017
MATHEMATICA
c[n_] := c[n] = CatalanNumber[n];
b[n_] := b[n] = If[n<2, 0, 2+((5n-9) b[n-1] - (4n-2) b[n-2])/(n-1)];
a[n_] := Sum[c[i] Sum[c[j]-(n-i), {j, 1, n-i}], {i, 0, n-2}] + b[n] + c[n];
a /@ Range[0, 40] (* Jean-François Alcover, Nov 29 2020 *)
PROG
(Python)
from functools import cache
@cache
def a(n):
return (
[1, 1, 3, 11][n]
if n < 4
else (
2 * (74 * n ** 2 - 69 * n - 110) * a(n - 1)
- 3 * (89 * n ** 2 - 139 * n - 70) * a(n - 2)
+ 2 * (91 * n ** 2 - 204 * n - 52) * a(n - 3)
- 4 * (5 * n + 1) * (2 * n - 7) * a(n - 4)
)
// ((n + 2) * (23 * n - 43))
)
print([a(n) for n in range(27)])
# Indranil Ghosh, Jul 15 2017, after Maple code, updated by Peter Luschny, Nov 29 2020
CROSSREFS
Sequence in context: A227638 A166336 A002783 * A007482 A134760 A257290
KEYWORD
nonn
AUTHOR
Kyle Goryl, Jul 13 2017
EXTENSIONS
More terms from Alois P. Heinz, Jul 13 2017
STATUS
approved