login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of perfect matchings on n edges which represent RNA secondary folding structures characterized by the Lyngso and Pedersen (L&P) family and the Cao and Chen (C&C) family.
0

%I #36 Mar 06 2022 10:30:40

%S 1,1,3,11,39,134,456,1557,5364,18674,65680,233182,834796,3010712,

%T 10929245,39904623,146451871,539972534,1999185777,7429623640,

%U 27705320423,103636336176,388775988319,1462261313876,5513152229901,20832701135628,78884459229627

%N Number of perfect matchings on n edges which represent RNA secondary folding structures characterized by the Lyngso and Pedersen (L&P) family and the Cao and Chen (C&C) family.

%H Aziza Jefferson, <a href="http://ufdc.ufl.edu/UFE0047620">The Substitution Decomposition of Matchings and RNA Secondary Structures</a>, PhD Thesis, University of Florida, 2015.

%F a(n) = Sum_{i=0..n-2} C_i*(Sum_{j=1..n-i} C_j - (n-i)) + C_n where C is A000108.

%F From _Vaclav Kotesovec_, Jul 13 2017: (Start)

%F D-finite recurrence (of order 3): (n+2)*(41*n^3 - 228*n^2 + 391*n - 180)*a(n) = 6*(41*n^4 - 187*n^3 + 192*n^2 + 120*n - 160)*a(n-1) - 3*(3*n - 4)*(41*n^3 - 146*n^2 + 83*n + 70)*a(n-2) + 2*(2*n - 5)*(41*n^3 - 105*n^2 + 58*n + 24)*a(n-3).

%F a(n) ~ 41 * 4^n / (9*sqrt(Pi)*n^(3/2)).

%F (End)

%p a:= proc(n) option remember; `if`(n<4, [1$2, 3, 11][n+1],

%p (2*(74*n^2-69*n-110)*a(n-1)-3*(89*n^2-139*n-70)*a(n-2)+

%p 2*(91*n^2-204*n-52)*a(n-3)-4*(5*n+1)*(2*n-7)*a(n-4))

%p /((n+2)*(23*n-43)))

%p end:

%p seq(a(n), n=0..40); # _Alois P. Heinz_, Jul 13 2017

%t c[n_] := c[n] = CatalanNumber[n];

%t b[n_] := b[n] = If[n<2, 0, 2+((5n-9) b[n-1] - (4n-2) b[n-2])/(n-1)];

%t a[n_] := Sum[c[i] Sum[c[j]-(n-i), {j, 1, n-i}], {i, 0, n-2}] + b[n] + c[n];

%t a /@ Range[0, 40] (* _Jean-François Alcover_, Nov 29 2020 *)

%o (Python)

%o from functools import cache

%o @cache

%o def a(n):

%o return (

%o [1, 1, 3, 11][n]

%o if n < 4

%o else (

%o 2 * (74 * n ** 2 - 69 * n - 110) * a(n - 1)

%o - 3 * (89 * n ** 2 - 139 * n - 70) * a(n - 2)

%o + 2 * (91 * n ** 2 - 204 * n - 52) * a(n - 3)

%o - 4 * (5 * n + 1) * (2 * n - 7) * a(n - 4)

%o )

%o // ((n + 2) * (23 * n - 43))

%o )

%o print([a(n) for n in range(27)])

%o # _Indranil Ghosh_, Jul 15 2017, after Maple code, updated by _Peter Luschny_, Nov 29 2020

%Y Cf. A000108, A256334.

%K nonn

%O 0,3

%A _Kyle Goryl_, Jul 13 2017

%E More terms from _Alois P. Heinz_, Jul 13 2017